欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MaxCompute Tunnel SDK数据上传利器——BufferedWriter使用指南 多线程javasdk 

程序员文章站 2022-06-12 12:35:43
...
摘要: MaxCompute 的数据上传接口(Tunnel)定义了数据 block 的概念:一个 block 对应一个 http request,多个 block 的上传可以并发而且是原子的,一次同步请求要么成功要么失败,不会污染其他的 block。这种设计对于服务端来讲十分简洁,但是也把记录状态做 fa.

本文用到的

阿里云数加-大数据计算服务MaxCompute产品地址:https://www.aliyun.com/product/odps
MaxCompute 的数据上传接口(Tunnel)定义了数据 block 的概念:一个 block 对应一个 http request,多个 block 的上传可以并发而且是原子的,一次同步请求要么成功要么失败,不会污染其他的 block。这种设计对于服务端来讲十分简洁,但是也把记录状态做 failover 的工作交给了客户端。

用户在使用 Tunnel SDK 编程时,需要对 block 这一层的语义进行认知,并且驱动数据上传的整个过程[1],并且自己进行容错,毕竟『网络错误是正常而不是异常』。由于用户文档中并没有强调这一点的重要性,导致很多用户踩了坑,一种常见的出错场景是,当客户端写数据的速度过慢,两次 write 的间隔超时[2],导致整个 block 上传失败。

High Level API

MaxCompute Java SDK 在 0.21.3-public 之后新增了 BufferredWriter 这个更高层的 API,简化了数据上传的过程,并且提供了容错的功能。 BufferedWriter 对用户隐藏了 block 这个概念,从用户角度看,就是在 session 上打开一个 writer 然后往里面写记录即可:

RecordWriter writer = null;

try {
  int i = 0; 
  writer = uploadSession.openBufferedWriter();
  Record product = uploadSession.newRecord();

  for (String item : items) {
    product.setString("name", item);
    product.setBigint("id", i);
    writer.write(product);
    i += 1;
  }
} finally {
  if (writer != null) {
    writer.close();
  }
}
uploadSession.commit();

具体实现时 BufferedWriter 先将记录缓存在客户端的缓冲区中,并在缓冲区填满之后打开一个 http 连接进行上传。BufferedWriter 会尽最大可能容错,保证数据上传上去。
由于屏蔽了底层细节,这个接口可能并不适合数据预划分、断点续传、分批次上传等需要细粒度控制的场景。

多线程上传示例

多线程上传时,每个线程只需要打开一个 writer 往里面写数据就行了。

class UploadThread extends Thread {
  private UploadSession session;
  private static int RECORD_COUNT = 1200;

  public UploadThread(UploadSession session) {
    this.session = session;
  }

  @Override
  public void run() {
    RecordWriter writer = up.openBufferedWriter();
    Record r = up.newRecord();
    for (int i = 0; i < RECORD_COUNT; i++) {
      r.setBigint(0, i);
      writer.write(r);
    }
    writer.close();
  }
};

public class Example {
  public static void main(String args[]) {

   // 初始化 MaxCompute 和 tunnel 的代码

   TableTunnel.UploadSession uploadSession = tunnel.createUploadSession(projectName, tableName);
   UploadThread t1 = new UploadThread(up);
   UploadThread t2 = new UploadThread(up);

   t1.start();
   t2.start();
   t1.join();
   t2.join();

   uploadSession.commit();
}

更多控制

重试策略

由于底层在上传出错时会回避一段固定的时间并进行重试,但如果你的程序不想花太多时间在重试上,或者你的程序位于一个极其恶劣的网络环境中,为此 TunnelBufferedWriter 允许用户配置重试策略。

用户可以选择三种重试回避策略:指数回避(EXPONENTIAL_BACKOFF)、线性时间回避(LINEAR_BACKOFF)、常数时间回避(CONSTANT_BACKOFF)。

例如下面这段代码可以将,write 的重试次数调整为 6,每一次重试之前先分别回避 4s、8s、16s、32s、64s 和 128s(从 4 开始的指数递增的序列)。

RetryStrategy retry
  = new RetryStrategy(6, 4, RetryStrategy.BackoffStrategy.EXPONENTIAL_BACKOFF)

writer = (TunnelBufferedWriter) uploadSession.openBufferedWriter();
writer.setRetryStrategy(retry);

缓冲区控制

如果你的程序对 JVM 的内存有严格的要求,可以通过下面这个接口修改缓冲区占内存的字节数(bytes):

writer.setBufferSize(1024*1024);

默认配置每一个 Writer 的 BufferSize 是 10 MiB。TunnelBufferedWriter 一次 flush buffer 的操作上传一个 block 的数据[3]。

多个进程共享 Session

由于一个 Session 的上传状态是通过维护一个 block list 实现的,对于多线程程序来讲,通过锁很容易实现资源的分配。但对于两个进程空间里的程序想要复用一个 Session 时,必须通过一种机制对资源进行隔离。

具体地,在 getUploadSession 的时候,必须指定这个共享这个 Session 的进程数目,以及一个用来区分进程的 global id:

//程序1:这个 session 将被两个 writer 共享,我是其中第 0 个
TableTunnel.UploadSession up
  = tunnel.getUploadSession(projectName, tableName, sid, 2, 0);
writer = session.openBufferedWriter();

//程序1:这个 session 将被两个 writer 共享,我是其中第 1 个
TableTunnel.UploadSession up
  = tunnel.getUploadSession(projectName, tableName, sid, 2, 1);
writer = session.openBufferedWriter();

Notes

[1] 一次完整的上传流程通常包括以下步骤:

先对数据进行划分
为每个数据块指定 block id,即调用 openRecordWriter(id)
然后用一个或多个线程分别将这些 block 上传上去
并在某个 block 上传失败以后,需要对整个 block 进行重传
在所有 block 都上传以后,向服务端提供上传成功的 blockid list 进行校验,即调用 session.commit([1,2,3,…])

[2] 因为使用长连接,服务端有计时器判断是否客户端是否 alive

[3] block 在服务端有 20000 个的数量上限,如果 BufferSize 设得太小会导致 20000 个 block 很快被用光

[4] Session的有效期为24小时,超过24小时会导致数据上传失败

原文链接:https://yq.aliyun.com/articles/65030?spm=a2c41.11181499.0.0