欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pytorch基础笔记 Ⅳ——单变量线性回归

程序员文章站 2022-03-10 17:55:20
文章目录前情函数GPU相关语句torch.unsqueeze 与 torch.squeeze正式开始导入必要模块构建数据集模型定义模型参数设置前情函数import torchGPU相关语句'''以下通过先判断GPU是否存在, 在通过对应的语句打印出GPU的信息'''if torch.cuda.is_available(): # 返回gpu数量 GPU_num = torch.cuda.device_count() # 返回gpu名字,设备索引默认从0开始...

前情函数

import torch

GPU相关语句

'''以下通过先判断GPU是否存在,
   在通过对应的语句打印出GPU的信息
'''

if torch.cuda.is_available():
    # 返回gpu数量
    GPU_num = torch.cuda.device_count()
    # 返回gpu名字,设备索引默认从0开始
    GPU_name = torch.cuda.get_device_name(0)
    # 返回当前设备索引
    GPU_index = torch.cuda.current_device()
    print(GPU_num, GPU_name, GPU_index)
else:
    print('Use CPU for work')
1 GeForce GTX 960M 0

下面语句用于将模型放在GPU上训练

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

device
device(type='cuda', index=0)

torch.unsqueeze 与 torch.squeeze

torch.unsqueeze(input, dim) → Tensor

    返回插入指定位置尺寸为1的新张量

    返回的张量与此张量共享相同的基础数据

    可以通过dim控制指定的轴向

这个函数主要是对数据维度进行扩充。给指定位置加上维数为1的维度

x0 = torch.tensor([1, 2, 3, 4])
print('x0 维度:', x0.size(),'\n', x0)

x1 = torch.unsqueeze(x0, 0)
print('x1 维度:', x1.size(),'\n', x1)

x2 = torch.unsqueeze(x0, 1)
print('x2 维度:', x2.size(),'\n', x2)
x0 维度: torch.Size([4]) 
 tensor([1, 2, 3, 4])
x1 维度: torch.Size([1, 4]) 
 tensor([[1, 2, 3, 4]])
x2 维度: torch.Size([4, 1]) 
 tensor([[1],
        [2],
        [3],
        [4]])

torch.squeeze(input, dim=None, out=None) → Tensor

    移除输入张量维度为1的轴

    例如输入张量的shape为: ( A × 1 × B × C × 1 × D ) (A \times 1 \times B \times C \times 1 \times D) (A×1×B×C×1×D)输出张量的shape则为: ( A × B × C × D ) (A \times B \times C \times D) (A×B×C×D)

    可以通过dim控制指定的轴向,例如输入张量的shape为: ( A × 1 × B ) (A \times 1 \times B) (A×1×B),通过squeeze(input, 1),输出张量的shape为: ( A × B ) (A \times B) (A×B)

这个函数主要对数据的维度进行压缩,去掉维数为1的的维度

x0 = torch.zeros(2, 1, 2, 1, 2)
print('x0 维度:', x0.size())

x1 = torch.squeeze(x0)
print('x1 维度:', x1.size())

x2 = torch.squeeze(x0, 0)
print('x2 维度:', x2.size())

x3 = torch.squeeze(x0, 1)
print('x3 维度:', x3.size())
x0 维度: torch.Size([2, 1, 2, 1, 2])
x1 维度: torch.Size([2, 2, 2])
x2 维度: torch.Size([2, 1, 2, 1, 2])
x3 维度: torch.Size([2, 2, 1, 2])

正式开始

导入必要模块

安装pytorch时,不会安装torchsummary,需要手动通过!pip install torchsummary安装,如果不在jupyter中,则去掉感叹号进行安装

%matplotlib inline
import torch
from torchsummary import summary
import torch.nn.functional as F
import matplotlib.pyplot as plt
import pylab as pl
from IPython import display

torch.__version__
'1.6.0'

构建数据集

本案例中将以一个正弦函数 y = s i n ( x ) y=sin(x) y=sin(x)为例

如果使用多个GPU,应该使用torch.cuda.manual_seed_all()为所有的GPU设置种子。

if torch.cuda.is_available():
    torch.cuda.manual_seed(1) #为当前GPU设置随机种子用于生成随机数,以使得结果是确定的
    print('GPU is available')
else:
    torch.manual_seed(1)      #为CPU设置随机种子用于生成随机数,以使得结果是确定的
    print('Use CPU for work')
GPU is available

squeeze是删除维度为1的轴,unsqueeze则是增加一个维度为1的轴,通过dim控制增加轴的方向,其中可以通过x.size()获取x的维度为torch.Size([100, 1])

import math

PI = math.pi

x = torch.unsqueeze(torch.linspace(-PI, PI, 200), dim=1)

y = torch.sin(x) + 0.07 * torch.randn(x.size())
plt.plot(x, torch.sin(x).numpy(), color='r', label='GroundTruth')
plt.scatter(x.numpy(), y.numpy(), s=10, color='b', label='Dataset')
plt.legend()
plt.show()

Pytorch基础笔记 Ⅳ——单变量线性回归

模型定义

采用relu激活函数,单隐层神经网络结构

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

开启GPU模式并查看网络摘要summary

net = Net(n_feature=1, n_hidden=10, n_output=1).to(device)

summary(net, input_size=(1,))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Linear-1                   [-1, 10]              20
            Linear-2                    [-1, 1]              11
================================================================
Total params: 31
Trainable params: 31
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 0.00
----------------------------------------------------------------

模型参数设置

优化器以及损失函数设置

optimizer = torch.optim.Adam(net.parameters(), lr=0.02)

loss_func = torch.nn.MSELoss()

将数据拷贝至GPU

x_data, y_data = x.to(device), y.to(device)

Pytorch参数重置,避免调参后重新运行for循环时,原始已训练参数进行保留

def weight_reset(m):
    if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear):
        m.reset_parameters()
%%time

net.apply(weight_reset)

loss_value = []

for i in range(1000):
    prediction = net(x_data)
    
    loss = loss_func(prediction, y_data)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    loss_value.append(loss.cpu().detach().numpy())

    if i % 10 == 0:
        pl.axis([-4, 4, -2, 2]) 
        pl.clf()
        pl.scatter(x.numpy(), y.numpy(), s=5)
        pl.plot(x.numpy(), torch.sin(x).numpy(), 'g', lw=2, label='GroundTruth')
        pl.plot(x.numpy(), prediction.cpu().detach().numpy(), 'r-', lw=2, label='Prediction')
        pl.text(1.0, -1.0, 'Loss=%.4f' % loss.cpu().detach().numpy(), fontdict={'size': 15, 'color':  'red'})
        pl.legend()
        display.display(pl.gcf())
        display.clear_output(wait=True)
Wall time: 31.3 s

Pytorch基础笔记 Ⅳ——单变量线性回归

损失值可视化

pl.plot([i for i in range(len(loss_value))], loss_value, label='model line', color='r')
pl.legend()
pl.show()

Pytorch基础笔记 Ⅳ——单变量线性回归

本文地址:https://blog.csdn.net/qq_39567427/article/details/111935757