利用队列实现BFS(广度优先搜索)
程序员文章站
2022-06-12 09:13:57
...
上图:
对于上图的结构,通过广度优先搜索BFS找到两个节点Node之间的最近距离(比如A和G之间是2)
1. 结点的处理顺序是什么?
在第一轮中,我们处理根结点。在第二轮中,我们处理根结点旁边的结点;在第三轮中,我们处理距根结点两步的结点;。。。。。。。
与树的层序遍历类似,越是接近根结点的结点将越早地遍历。
如果在第 k 轮中将结点 X 添加到队列中,则根结点与 X 之间的最短路径的长度恰好是 k。也就是说,第一次找到目标结点时,你已经处于最短路径中。
2. 队列的入队和出队顺序是什么?
我们首先将根结点排入队列。然后在每一轮中,我们逐个处理已经在队列中的结点,并将所有邻居添加到队列中。值得注意的是,新添加的节点不会立即遍历,而是在下一轮中处理。
结点的处理顺序与它们添加到队列的顺序是完全相同的顺序,即先进先出(FIFO)。这就是我们在 BFS 中使用队列的原因。
对应上面的结构我们的队列元素为:
round1:A->ABCD->BCD (添加根节点-》如果根节点不是目标-》添加根节点的所有子节点)
round2:BCD->BCDE->CDE->CDEF->DEF->DEFG->EFG(判断B是不是,不是则添加B的所有子节点,并将B出队;判断C是不是,如果C不是则添加C的所有子节点入队,并将C出队…略)
round3:EFG->FG->G(判断E是不是,E不是添加E的所有子节点,判断F是不是。。。。。。。)
伪代码
/**
* Return the length of the shortest path between root and target node.
*/
int BFS(Node root, Node target) {
Queue<Node> queue; // store all nodes which are waiting to be processed
int step = 0; // number of steps neeeded from root to current node
// initialize
add root to queue;
// BFS
while (queue is not empty) {
step = step + 1;
// iterate the nodes which are already in the queue
int size = queue.size();
for (int i = 0; i < size; ++i) {
Node cur = the first node in queue;
return step if cur is target;
for (Node next : the neighbors of cur) {
add next to queue;
}
remove the first node from queue;
}
}
return -1; // there is no path from root to target
}
确保不会重复添加子节点的伪代码:
其中添加了Set,用来去重;
/**
* Return the length of the shortest path between root and target node.
*/
int BFS(Node root, Node target) {
Queue<Node> queue; // store all nodes which are waiting to be processed
Set<Node> used; // store all the used nodes
int step = 0; // number of steps neeeded from root to current node
// initialize
add root to queue;
add root to used;
// BFS
while (queue is not empty) {
step = step + 1;
// iterate the nodes which are already in the queue
int size = queue.size();
for (int i = 0; i < size; ++i) {
Node cur = the first node in queue;
return step if cur is target;
for (Node next : the neighbors of cur) {
if (next is not in used) {
add next to queue;
add next to used;
}
}
remove the first node from queue;
}
}
return -1; // there is no path from root to target
}
推荐阅读
-
Python利用heapq实现一个优先级队列的方法
-
可能是目前为止最为详细的深度优先搜索DFS和广度优先搜索BFS算法分析
-
数据结构与算法-----BFS与DFS(广度优先搜索与深度优先搜索)
-
数据结构与算法_深度优先搜索(DFS)与广度优先搜索(BFS)详解
-
Java数据结构与算法:图、图的概念、深度优先搜索DFS、广度优先搜索BFS、思路分析、代码实现
-
【数据结构】图的遍历——深度优先搜索DFS、广度优先搜索BFS
-
【算法】BFS—广度优先搜索
-
BFS(广度优先搜索算法)和DFS(深度优先搜索算法)
-
数据结构与算法————图的遍历DFS深度优先搜索和BFS广度优先搜索
-
【算法】广度优先搜索(BFS)和深度优先搜索(DFS)