欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch入门案例---线性回归

程序员文章站 2022-06-11 22:47:03
...
import torch
from torch import nn
import numpy as np
import torch.utils.data as Data
from torch.nn import init

# 使得模型的可复现性
torch.manual_seed(1)
# 设置默认的数据格式
torch.set_default_tensor_type('torch.FloatTensor')

# 1.数据处理
num_inputs = 2
num_examples = 1000

true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b

# 增加数据的噪声, 模拟真实数据
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

# 2.读取数据
batch_size = 10

dataset = Data.TensorDataset(features, labels)
# 查看数据的存储类型 [*dataset]
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True, num_workers=2)

# 3.定义网络
class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()
        self.linear = nn.Linear(n_feature, 1)
    
    def forward(self, x):
        return self.linear(x)
net = LinearNet(feature)

# 初始化网络的参数(有多种初始化的方法,但是一般偏值设置为零)
for name, param in net.named_parameters():
    if name == "linear.weight":
        #权重
        init.normal_(param, mean=0.0, std=0.01)
    else:
        #偏值
        init.constant_(param, val=0.0)

# 4.训练
# 超参数
lr = 0.01
batch_size = 10
num_epochs = 5
# 定义损失
critrion = nn.MSELoss()
# 定义优化函数
optimizer = t.optim.SGD(net.parameters(), lr=lr)

for epoch in range(num_epochs):
    for X, y in data_iter:
        out = net(X)
        loss = critrion(out, y.view(-1, 1))
        # 梯度清零
        optimizer.zero_grad()
        loss.backward()
        # 梯度更新
        optimizer.step()
    print("epcoch:%d, loss:%f"%(epoch, loss.item()))

  • 结果
epcoch:0, loss:0.861575
epcoch:1, loss:0.015179
epcoch:2, loss:0.000336
epcoch:3, loss:0.000168
epcoch:4, loss:0.000151
相关标签: pytorch