欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pytorch学习笔记系列(2):实现Linear Regression

程序员文章站 2022-06-11 22:31:26
...

pytorch实现Linear Regression

  • 做预测时numpy()函数不能计算带有requires grad属性的参数,因此需要使用detach
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Hyper-parameters
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001

# Toy dataset
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
                    [9.779], [6.182], [7.59], [2.167], [7.042],
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
                    [3.366], [2.596], [2.53], [1.221], [2.827],
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

# Linear regression model
model = nn.Linear(input_size, output_size)

# Loss and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# Train the model
for epoch in range(num_epochs):
    # Convert numpy arrays to torch tensors
    inputs = torch.from_numpy(x_train)
    targets = torch.from_numpy(y_train)

    # Forward pass
    outputs = model(inputs)
    # 每一步都要重新计算loss
    loss = criterion(outputs, targets)

    # Backward and optimize
    # zero the gradient buffers,必须要置零
    optimizer.zero_grad()
    # 每一步都要重新进行反向传播
    loss.backward()
    # step操作相当于对所有需要更新梯度的参数进行了梯度更新:减去学习率乘以梯度
    optimizer.step()

    if (epoch + 1) % 5 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, loss.item()))

# Plot the graph
# numpy()函数不能计算带有requires grad属性的参数,因此需要使用detach
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()

# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')