欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MITx - 6.00.2x 笔记(Unit1 Lecture 2 Decision Trees and Dynamic Programming)

程序员文章站 2022-06-11 20:15:58
...

Lecture 2 Decision Trees and Dynamic Programming

Brute Force Algorithms

暴力算法,穷举法

Decision Tree

MITx - 6.00.2x 笔记(Unit1 Lecture 2 Decision Trees and Dynamic Programming)

class Food(object):
    def __init__(self, n, v, w):
        self.name = n
        self.value = v
        self.calories = w

    def getValue(self):
        return self.value

    def getCost(self):
        return self.calories

    def density(self):
        return self.getValue() / self.getCost()

    def __str__(self):
        return self.name + ': <' + str(self.value) + ', ' + str(self.calories) + '>'
def buildMenu(names, values, calories):
    """names, values, calories lists of same length.
        name a list of strings
        values and calories lists of numbers
        return list of Foods"""

    menu = []
    for i in range(len(values)):
        menu.append(Food(names[i], values[i], calories[i]))

    return menu
def greedy(items, maxCost, keyFunction):
    """assumes items a list, maxCost >= 0, 
        keyFunction maps elements of items to numbers"""

    itemsCopy = sorted(items, key = keyFunction, reverse = True) # 从高到低
    result = []
    totalValue, totalCost = 0.0, 0.0

    for i in range(len(items)):
        if (totalCost + itemsCopy[i].getCost()) <= maxCost: # 检查是否还有空间放新东西
            result.append(itemsCopy[i])
            totalCost += itemsCopy[i].getCost()
            totalValue += itemsCopy[i].getValue()

    return (result, totalValue)


def testGreedy(items, constraint, keyFunction):
    taken, val = greedy(items, constraint, keyFunction)
    print('Total value of items taken = ', val)
    for item in taken:
        print('    ', item)

def testGreedys(foods, maxUnits):
    print('Use greedy by value to allocate', maxUnits, 'calories')
    testGreedy(foods, maxUnits, Food.getValue)

    print('\nUse greedy by cost to allocate', maxUnits, 'calories')
    testGreedy(foods, maxUnits, 
                       lambda x: 1/Food.getCost(x))

    print('\nUse greedy by density to allocate', maxUnits, 'calories')
    testGreedy(foods, maxUnits, Food.density)
def maxVal(toConsider, avail):
    """Assumes toConsider a list of items, avail a weight
        Return a tuple of the total value of a solution to the
        0/1 knapsack problem and the items of that solution"""

    if toConsider == [] or avail == 0:
        result = (0.0, ())
    elif toConsider[0].getCost() > avail:
        # Explore right branch only
        result = maxVal(toConsider[1: ], avail)
    else:
        nextItem = toConsider[0]
        # Explore left branch
        withVal, withToTake = maxVal(toConsider[1: ],
                                                          avail - nextItem.getCost())
        withVal += nextItem.getValue()
        # Explore right branch
        withoutVal, withoutToTake = maxVal(toConsider[1: ], avail)
        # Choose better branch
        if withVal > withoutVal:
            result = (withVal, withToTake + (nextItem, ))
        else:
            result = (withoutVal, withoutToTake)
    return result

def testMaxVal(foods, maxUnits, printItems = True):
    print('Use search tree to allocate', maxUnits, ' calories')
    val, taken = maxVal(foods, maxUnits)
    print('Total value of items taken =', val)
    if printItems:
        for item in taken:
            print('    ', item)

names = ['wine', 'beer', 'pizza', 'burger', 'fries', 'cola', 'apple', 'donut', 'cake']
values = [89, 90, 95, 100, 90, 79, 50, 10]
calories = [123, 154, 258, 354, 365, 150, 95, 195]
foods = buildMenu(names, values, calories) 

testGreedys(foods, 750)
print(' ')
testMaxVal(foods, 750)
# Out:
    Use greedy by value to allocate 750 calories
    Total value of items taken =  284.0
         burger: <100, 354>
         pizza: <95, 258>
         wine: <89, 123>

    Use greedy by cost to allocate 750 calories
    Total value of items taken =  318.0
         apple: <50, 95>
         wine: <89, 123>
         cola: <79, 150>
         beer: <90, 154>
         donut: <10, 195>

    Use greedy by density to allocate 750 calories
    Total value of items taken =  318.0
         wine: <89, 123>
         beer: <90, 154>
         cola: <79, 150>
         apple: <50, 95>
         donut: <10, 195>

    Use search tree to allocate 750  calories
    Total value of items taken = 353.0
         cola: <79, 150>
         pizza: <95, 258>
         beer: <90, 154>
         wine: <89, 123>

背包问题示例

# generate all combinations of N items
def powerSet(items):
    N = len(items)
    # enumerate the 2**N possible combinations
    for i in range(2**N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            # ">>" is one bit right move in binary, equals divde 2**j
            # check jth digit of integer i, if 1 take it
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

共有N个物品,决定是否放入背包中,每个物品放或者不放,共有2N种可能。
要求列出所有放入的组合,所以只考虑(i >> j) % 2 == 1的情况,>>按位运算符

习题:
假设将N个物品放入两个背包中,遍历各种组合。

def yieldAllCombos(items):
    """
        Generates all combinations of N items into two bags, whereby each 
        item is in one or zero bags.

        Yields a tuple, (bag1, bag2), where each bag is represented as a list 
        of which item(s) are in each bag.
    """
    # Your code here
    N = len(items)
    for i in range(3**N):
        bag_1 = []
        bag_2 = []
        for j in range(N):
            if (i // 3**j) % 3 == 1:
                bag_1.append(items[j])
            elif (i // 3**j) % 3 == 2:
                bag_2.append(items[j])
        yield (bag_1, bag_2)

Recursive Fibonacci

MITx - 6.00.2x 笔记(Unit1 Lecture 2 Decision Trees and Dynamic Programming)

直接用递归计算斐波那契数列效率很低,算到第十几个数的就至少要好几秒,用这种方法算第120个数简直不可能。
MITx - 6.00.2x 笔记(Unit1 Lecture 2 Decision Trees and Dynamic Programming)

复习一下6.00 1x中讲过的优化方法,用字典存储已经算过的fib数,可以直接调用从而避免重复计算:

def fastFib(n, memo = {}):
    """Assumes n is an int >= 0, memo used only by recursive calls
        Return Fibonacci of n"""

    if n ==0 or n == 1:
        return 1
    try:
        return memo[n]
    except KeyError:
        result = fastFib(n-1, memo) + fastFib(n-2, memo)
        memo[n] = result
        return result

fastFib(120)不到1秒就出结果。

Dynamic Programming(动态规划)

MITx - 6.00.2x 笔记(Unit1 Lecture 2 Decision Trees and Dynamic Programming)

小结

MITx - 6.00.2x 笔记(Unit1 Lecture 2 Decision Trees and Dynamic Programming)

参考:
递归、分治策略、动态规划以及贪心算法之间的关系

上一篇: 复杂链表的复制

下一篇: Unit 5