设计模式笔记---享元模式
程序员文章站
2022-03-10 17:12:55
1、概念是池技术的重要实现方式,使用共享对象可有效地支持大量的细粒度的对象。2、说明Flyweight:抽象享元角色(一个产品的抽象类,同时定义出对象的外部状态和内部状态的接口或实现)public abstract class Flyweight { private String intrinsic; protected final String extrinstic; public Flyweight(String _extrinstic){...
1、概念
是池技术的重要实现方式,使用共享对象可有效地支持大量的细粒度的对象。
2、说明
Flyweight:抽象享元角色(一个产品的抽象类,同时定义出对象的外部状态和内部状态的接口或实现)
public abstract class Flyweight {
private String intrinsic;
protected final String extrinstic;
public Flyweight(String _extrinstic){
this.extrinstic = _extrinstic;
}
public abstract void operate();
public String getIntrinsic() {
return intrinsic;
}
public void setIntrinsic(String intrinsic) {
this.intrinsic = intrinsic;
}
}
ConcreFlyweight:具体享元单元(具体的一个产品类,实现抽象角色定义的义务)
public class ConcreFlyweight1 extends Flyweight {
public ConcreFlyweight1(String _extrinstic) {
super(_extrinstic);
}
@Override
public void operate() {
}
}
FlyweightFactory:享元工厂(构造一个池容器,同时提供从池中获得对象的方法)
public class FlyweightFactory {
private static HashMap<String,Flyweight> pool = new HashMap<String, Flyweight>();
public static Flyweight getFlyweight(String extrinstic){
Flyweight flyweight = null;
if(pool.containsKey(extrinstic)){
flyweight = pool.get(extrinstic);
}else{
flyweight = new ConcreFlyweight1(extrinstic);
pool.put(extrinstic,flyweight);
}
return flyweight;
}
}
场景类:
public class Client {
public static void main(String args[]){
Integer times = 1000000000;
String key = "test";
FlyweightFactory.getFlyweight(key);
Long t1 = System.currentTimeMillis();
for(int i=0;i<times;i++){
Flyweight flyweight = new ConcreFlyweight1(key);
}
Long t2 = System.currentTimeMillis();
System.out.println("create time 1:"+(t2-t1));
Long t3 = System.currentTimeMillis();
for(int i=0;i<times;i++){
FlyweightFactory.getFlyweight(key);
}
Long t4 = System.currentTimeMillis();
System.out.println("create time 2:"+(t4-t3));
}
}
输出结果:
create time 1:491
create time 2:4199
3.特点
优点:大大减少应用程序创建的对象,降低程序内存的占用,增强程序的性能
缺点:提高了系统复杂性;工厂类创建对象时间变长
本文地址:https://blog.csdn.net/qq_39961073/article/details/110248415
上一篇: JVM04 - 虚拟机栈
下一篇: 排列组合问题总结: