欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

pytorch 6 batch_train 批训练操作

程序员文章站 2022-03-10 16:58:26
看代码吧~import torchimport torch.utils.data as datatorch.manual_seed(1) # reproducible# batch_size =...

看代码吧~

import torch
import torch.utils.data as data
torch.manual_seed(1)    # reproducible
# batch_size = 5  
batch_size = 8      # 每次使用8个数据同时传入网路
x = torch.linspace(1, 10, 10)       # this is x data (torch tensor)
y = torch.linspace(10, 1, 10)       # this is y data (torch tensor)
torch_dataset = data.tensordataset(x, y)
loader = data.dataloader(
    dataset=torch_dataset,      # torch tensordataset format
    batch_size=batch_size,      # mini batch size
    shuffle=false,              # 设置不随机打乱数据 random shuffle for training
    num_workers=2,              # 使用两个进程提取数据,subprocesses for loading data
)
def show_batch():
    for epoch in range(3):   # 全部的数据使用3遍,train entire dataset 3 times
        for step, (batch_x, batch_y) in enumerate(loader):  # for each training step
            # train your data...
            print('epoch: ', epoch, '| step: ', step, '| batch x: ',
                  batch_x.numpy(), '| batch y: ', batch_y.numpy())
if __name__ == '__main__':
    show_batch()

batch_size = 8 , 所有数据利用三次

epoch:  0 | step:  0 | batch x:  [1. 2. 3. 4. 5. 6. 7. 8.] | batch y:  [10.  9.  8.  7.  6.  5.  4.  3.]
epoch:  0 | step:  1 | batch x:  [ 9. 10.] | batch y:  [2. 1.]
epoch:  1 | step:  0 | batch x:  [1. 2. 3. 4. 5. 6. 7. 8.] | batch y:  [10.  9.  8.  7.  6.  5.  4.  3.]
epoch:  1 | step:  1 | batch x:  [ 9. 10.] | batch y:  [2. 1.]
epoch:  2 | step:  0 | batch x:  [1. 2. 3. 4. 5. 6. 7. 8.] | batch y:  [10.  9.  8.  7.  6.  5.  4.  3.]
epoch:  2 | step:  1 | batch x:  [ 9. 10.] | batch y:  [2. 1.]

补充:pytorch批训练bug

问题描述:

在进行pytorch神经网络批训练的时候,有时会出现报错 

typeerror: batch must contain tensors, numbers, dicts or lists; found <class 'torch.autograd.variable.variable'>

解决办法:

第一步:

检查(重点!!!!!):

train_dataset = data.tensordataset(train_x, train_y)

train_x,和train_y格式,要求是tensor类,我第一次出错就是因为传入的是variable

可以这样将数据变为tensor类:

train_x = torch.floattensor(train_x)

第二步:

train_loader = data.dataloader(
        dataset=train_dataset,
        batch_size=batch_size,
        shuffle=true
    )

实例化一个dataloader对象

第三步:

    for epoch in range(epochs):
        for step, (batch_x, batch_y) in enumerate(train_loader):
            batch_x, batch_y = variable(batch_x), variable(batch_y)

这样就可以批训练了

需要注意的是:train_loader输出的是tensor,在训练网络时,需要变成variable

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。