OpenCV-Python Feature2D 特征点检测(含SIFT/SURF/ORB/KAZE/FAST/BRISK/AKAZE)
对于OpenCV-Python,OpenCV2.x和OpenCV3.x的函数使用方式有很大不同。网上很多教程都还是基于OpenCV2.x,此版本已经逐渐被弃用。
本教程针对特征点检测,分析OpenCV2.x和OpenCV3.x的不同之后,并重点介绍OpenCV3.x-Python的特征点检测。
Open2.x-Python 特征点检测方法
对于OpenCV2.x-Python,特征点检测及显示方法如下:# OpenCV2.x-Python
function = cv2.Function_Name()
keypoints = function.detect(img, None)
img2 = cv2.drawKeyPoints(img, keypoints, color=(0,255,0))
其中Function_Name就是特征检测方法的函数名,如BRISK、FastFeatureDetector等。
比如,在OpenCV2.x-Python,想使用Fast来检测特征点,示例如下:
# OpenCV2.x-Python
fast = cv2.FastFeatureDetector()
keypoints = fast.detect(img, None)
img2 = cv2.drawKeypoints(img, keypoints, color=(255,0,0))
Open3.x-Python 特征点检测方法
对于OpenCV3.x-Python,特征点检测及显示方法如下:
# OpenCV3.x-Python
# 注意有_create()后缀
function = cv2.Function_Name_create()
keypoints = function.detect(img, None)
# 注意显示之前要先将img2初始化
img2 = img.copy()
img2 = cv2.drawKeyPoints(img, keypoints, color=(0,255,0))
其中Function_Name就是特征检测方法的函数名,如BRISK、FastFeatureDetector等。
[注意1]:对于OpenCV3.x-Python,还要在Function_Name后加上_create后缀。其实这一点在opencv_doc中具体的函数python使用方法中已经注明了。
[注意2]:对于OpenCV3.x-Python,若要显示检测的特征点,需要初始化img2,才能正常显示。这里可以先使用img2 = img.copy()完成拷贝初始化。
下面就重点介绍OpenCV3.x-Python中的各种特征点检测方法的使用示例。
测试图像为标准的lena.png
AKAZE Feature Detection
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测AKAZE特征点
# Author: Amusi
# Date: 2018-03-17
# Reference: https://docs.opencv.org/master/d8/d30/classcv_1_1AKAZE.html
import cv2
import numpy
def main():
img = cv2.imread("lena.png")
cv2.imshow('Input Image', img)
cv2.waitKey(0)
# 检测
akaze = cv2.AKAZE_create()
keypoints = akaze.detect(img, None)
# 显示
# 必须要先初始化img2
img2 = img.copy()
img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
cv2.imshow('Detected AKAZE keypoints', img2)
cv2.waitKey(0)
if __name__ == '__main__':
main()
BRISK Feature Detection
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测BRISK特征点
# Author: Amusi
# Date: 2018-03-17
# Reference: https://docs.opencv.org/master/de/dbf/classcv_1_1BRISK.html
import cv2
import numpy
def main():
img = cv2.imread("lena.png")
cv2.imshow('Input Image', img)
cv2.waitKey(0)
brisk = cv2.BRISK_create()
keypoints = brisk.detect(img, None)
# 必须要先初始化img2
img2 = img.copy()
img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
cv2.imshow('Detected BRISK keypoints', img2)
cv2.waitKey(0)
if __name__ == '__main__':
main()
Fast Feature Detection
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测FAST特征点
# Author: Amusi
# Date: 2018-03-17
# Reference: https://docs.opencv.org/master/df/d74/classcv_1_1FastFeatureDetector.html
import cv2
import numpy
def main():
img = cv2.imread("lena.png")
cv2.imshow('Input Image', img)
cv2.waitKey(0)
# 2018-03-17 Amusi: OpenCV3.x FeatureDetector写法有变化
# OpenCV2.x
# fast = cv2.FastFeatureDetector()
# keypoints = fast.detect(img, None)
# OpenCV3.x
# 注意有_create()后缀
fast = cv2.FastFeatureDetector_create()
keypoints = fast.detect(img, None)
# 必须要先初始化img2
img2 = img.copy()
img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
cv2.imshow('Detected FAST keypoints', img2)
cv2.waitKey(0)
if __name__ == '__main__':
main()
KAZE Feature Detection
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测KAZE特征点
# Author: Amusi
# Date: 2018-03-17
# Reference: https://docs.opencv.org/master/d3/d61/classcv_1_1KAZE.html
import cv2
import numpy
def main():
img = cv2.imread("lena.png")
cv2.imshow('Input Image', img)
cv2.waitKey(0)
# 检测
kaze = cv2.KAZE_create()
keypoints = kaze.detect(img, None)
# 显示
# 必须要先初始化img2
img2 = img.copy()
img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
cv2.imshow('Detected KAZE keypoints', img2)
cv2.waitKey(0)
if __name__ == '__main__':
main()
ORB Feature Detection
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测ORB特征点
# Author: Amusi
# Date: 2018-03-17
# Reference: https://docs.opencv.org/master/db/d95/classcv_1_1ORB.html
import cv2
import numpy
def main():
img = cv2.imread("lena.png")
cv2.imshow('Input Image', img)
cv2.waitKey(0)
# 检测
orb = cv2.ORB_create()
keypoints = orb.detect(img, None)
# 显示
# 必须要先初始化img2
img2 = img.copy()
img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
cv2.imshow('Detected ORB keypoints', img2)
cv2.waitKey(0)
if __name__ == '__main__':
main()
----------我是可爱的分割线----------
下面介绍属于nonfree的特征检测方法,如SIFT和SURF。
这些方法在opencv-contrib中,所以想要使用前,请卸载当前非contrib版本的opencv,即pip uninstall opencv-python后;再重新安装opencv-contrib-python,即pip install opencv-contrib-python
SIFT Feature Detection
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测SIFT特征点
# Author: Amusi
# Date: 2018-03-17
# Reference: https://docs.opencv.org/master/d5/d3c/classcv_1_1xfeatures2d_1_1SIFT.html
import cv2
import numpy
def main():
img = cv2.imread("lena.png")
cv2.imshow('Input Image', img)
cv2.waitKey(0)
# 检测
sift = cv2.xfeatures2d.SIFT_create()
keypoints = sift.detect(img, None)
# 显示
# 必须要先初始化img2
img2 = img.copy()
img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
cv2.imshow('Detected SIFT keypoints', img2)
cv2.waitKey(0)
if __name__ == '__main__':
main()
SURF Feature Detection
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# Summary: 使用OpenCV3.x-Python检测SURF特征点
# Author: Amusi
# Date: 2018-03-17
# Reference: https://docs.opencv.org/master/d5/df7/classcv_1_1xfeatures2d_1_1SURF.html
import cv2
import numpy
def main():
img = cv2.imread("lena.png")
cv2.imshow('Input Image', img)
cv2.waitKey(0)
# 检测
surf = cv2.xfeatures2d.SURF_create()
keypoints = surf.detect(img, None)
# 显示
# 必须要先初始化img2
img2 = img.copy()
img2 = cv2.drawKeypoints(img, keypoints, img2, color=(0,255,0))
cv2.imshow('Detected SURF keypoints', img2)
cv2.waitKey(0)
if __name__ == '__main__':
main()
注:OpenCV3.x-Python与OpenCV2.x-Python有很多函数的用法不同,虽然网上教程大多参次不齐,但可以直接去官网查看最新的用法(官网即正义)
上一篇: PHP笔记,韩顺平php笔记