欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

1131 Subway Map (30分)

程序员文章站 2022-06-11 12:22:28
...

In the big cities, the subway systems always look so complex to the visitors. To give you some sense, the following figure shows the map of Beijing subway. Now you are supposed to help people with your computer skills! Given the starting position of your user, your task is to find the quickest way to his/her destination.

1131 Subway Map (30分)

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 100), the number of subway lines. Then N lines follow, with the i-th (i=1,⋯,N) line describes the i-th subway line in the format:

M S[1] S[2] ... S[M]

where M (≤ 100) is the number of stops, and S[i]'s (i=1,⋯,M) are the indices of the stations (the indices are 4-digit numbers from 0000 to 9999) along the line. It is guaranteed that the stations are given in the correct order -- that is, the train travels between S[i] and S[i+1] (i=1,⋯,M−1) without any stop.

Note: It is possible to have loops, but not self-loop (no train starts from S and stops at S without passing through another station). Each station interval belongs to a unique subway line. Although the lines may cross each other at some stations (so called "transfer stations"), no station can be the conjunction of more than 5 lines.

After the description of the subway, another positive integer K (≤ 10) is given. Then K lines follow, each gives a query from your user: the two indices as the starting station and the destination, respectively.

The following figure shows the sample map.

1131 Subway Map (30分)

Note: It is guaranteed that all the stations are reachable, and all the queries consist of legal station numbers.

Output Specification:

For each query, first print in a line the minimum number of stops. Then you are supposed to show the optimal path in a friendly format as the following:

Take Line#X1 from S1 to S2.
Take Line#X2 from S2 to S3.
......

where Xi's are the line numbers and Si's are the station indices. Note: Besides the starting and ending stations, only the transfer stations shall be printed.

If the quickest path is not unique, output the one with the minimum number of transfers, which is guaranteed to be unique.

Sample Input:

4
7 1001 3212 1003 1204 1005 1306 7797
9 9988 2333 1204 2006 2005 2004 2003 2302 2001
13 3011 3812 3013 3001 1306 3003 2333 3066 3212 3008 2302 3010 3011
4 6666 8432 4011 1306
3
3011 3013
6666 2001
2004 3001

Sample Output:

2
Take Line#3 from 3011 to 3013.
10
Take Line#4 from 6666 to 1306.
Take Line#3 from 1306 to 2302.
Take Line#2 from 2302 to 2001.
6
Take Line#2 from 2004 to 1204.
Take Line#1 from 1204 to 1306.
Take Line#3 from 1306 to 3001.

题意:告知n条地铁路线,可能形成环,现在给出起点和目的点,让找一条最快的(停站最少,相同停站找换乘最少的[唯一])路径,按照一定的格式进行输出。

 

刚开始用广搜写的,写到后来发现相同数量的停站点会导致广搜可能优先选择换乘数量更大的, 如果要选择优先级更高即换乘数量底的路线要先遍历一下现在当前各个路线的换乘数量,再选择最少的,感觉再写下去比较麻烦,用深搜会好很多,换乘数量和停站以及线路都可以作为参数传递。输出格式写的很懵圈,ansv记录了每个经历过的站,ansline记录每个到达ansv[i]的地铁线,如果ansline[i]!=ansline[i-1],则说明ansv[i]这个站将要换乘到别的线路,那么此时就要输出。

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
const int inf = 1e9+10;
int n,k,src,dst,minstep,minchange,vis[maxn];
vector<int> ansv,runv,ansline,runline;

struct Node
{
    int cur;
    vector<int> next;
    vector<int> line;
};

Node sub[maxn];

void dfs(int r,int changenum,int step,int curline)
{
    if(step>minstep)return;
   // cout<<"r: "<<r<<" changenum: "<<changenum<<" step: "<<step<<" curline: "<<curline<<endl;
    vis[r] = 1;
    runv.push_back(r);
    runline.push_back(curline);
    if(r==dst)
    {
        if(minstep>step)
        {
            minstep = step;
            minchange = changenum;
            ansv = runv;
            ansline = runline;
        }else if(minstep == step && changenum<minchange)
        {
            minchange = changenum;
            ansv = runv;
            ansline = runline;
        }
        vector<int> vt = runv;
//        for(int i=0;i<vt.size();i++)
//        cout<<vt[i]<<" ";
        runv.pop_back();
        runline.pop_back();
        vis[r]=-1;
        return;
    }
    for(int i=0;i<sub[r].next.size();i++)
    {
        if(vis[sub[r].next[i]]==-1)
        {
            int cnm,nextline;
            if(sub[r].line[i] == curline)
            {
                cnm = changenum;
                nextline = curline;
            }else
            {
                cnm=changenum+1;
                nextline = sub[r].line[i];
            }
            dfs(sub[r].next[i],cnm,step+1,nextline);
        }
    }
        runv.pop_back();
        runline.pop_back();
        vis[r]=-1;
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        int m,sj;
        scanf("%d",&m);
        scanf("%d",&sj);
        for(int j=1;j<m;j++)
        {
            int si;
            scanf("%d",&si);
            sub[si].cur=si;
            sub[si].next.push_back(sj);
            sub[si].line.push_back(i);

            sub[sj].cur = sj;
            sub[sj].next.push_back(si);
            sub[sj].line.push_back(i);
            sj=si;
        }
    }
    cin>>k;
    while(k--)
    {
        fill(vis,vis+maxn,-1);
        minchange = inf;
        minstep = inf;
       scanf("%d%d",&src,&dst);
       dfs(src,0,0,-1);
       int laststation = ansv[0],lastline=ansline[1];
       cout<<ansv.size()-1<<endl;
       for(int i=1;i<ansv.size();i++)
       {
           int curstation,nxline;
           curstation = ansv[i];
           nxline = ansline[i+1];

           if(i==ansv.size()-1 || nxline!=lastline)
           {
               printf("Take Line#%d from %04d to %04d.\n",lastline,laststation,curstation);
               laststation = curstation;
           }
           lastline = nxline;

       }
    }

    return 0;
}

 

相关标签: ACM 搜索