欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

32 WebGL环境光下的漫反射光的计算

程序员文章站 2022-06-11 07:59:26
...

案例查看地址:点击这里

现实生活中,我们看物体不单单有平行光(太阳光)和点光源的照射,还有环境光。所以,背面的颜色也不会达到和上一节一样黑的程度,也会有一定的变亮的效果,所以,这一节我们将环境光的漫反射加入进去,来使得物体看上去更加的逼真。

根据上一节的案例,我们需要将环境反射光颜色计算出来,然后获取真实的颜色。

首先我们使用:

<环境反射光颜色>=<入射光颜色> x <表面基底色>

来计算出环境反射光的颜色,然后再通过

<表面的反射光颜色> = <漫反射光颜色> + <环境反射光颜色>

来获取表面实际的反射光颜色。

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport"
          content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0">
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
    <title>Title</title>
    <style>
        body {
            margin: 0;
            text-align: center;
        }

        #canvas {
            margin: 0;
        }
    </style>
</head>
<body onload="main()">
<canvas id="canvas" height="800" width="1200"></canvas>
</body>
<script src="lib/webgl-utils.js"></script>
<script src="lib/webgl-debug.js"></script>
<script src="lib/cuon-utils.js"></script>
<script src="lib/cuon-matrix.js"></script>
<script>
    //顶点着色器
    var VSHADER_SOURCE = "" +
        "attribute vec4 a_Position;\n" +
        "attribute vec4 a_Color;\n" +
        "attribute vec4 a_Normal;\n" +//法向量
        "uniform mat4 u_MvpMatrix;\n" +
        "uniform vec3 u_LightColor;\n" +//光线颜色
        "uniform vec3 u_LightDirection;\n" +//归一化的世界坐标
        "uniform vec3 u_AmbientLight;\n"+ //环境光颜色
        "varying vec4 v_Color;\n" +
        "void main(){\n" +
        "   gl_Position = u_MvpMatrix * a_Position;\n" +
        //对法向量进行归一化
        "   vec3 normal = normalize(vec3(a_Normal));\n" +
        //计算光线方向和法向量的点积
        "   float nDotL = max(dot(u_LightDirection,normal),0.0);\n" +
        //计算漫反射光的颜色
        "   vec3 diffuse = u_LightColor * vec3(a_Color) * nDotL;\n" +
        //计算环境光产生的反射光颜色
        "   vec3 ambient = u_AmbientLight * a_Color.rgb;\n" +
        //将以上两者相加得到物体最终的颜色
        "   v_Color = vec4(diffuse+ambient,a_Color.a);\n" +
        "}";

    //片元着色器
    var FSHADER_SOURCE = "" +
        "#ifdef GL_ES\n" +
        "precision mediump float;\n" +
        "#endif\n" +
        "varying vec4 v_Color;\n" +
        "void main(){\n" +
        "   gl_FragColor = v_Color;\n" +
        "}";

    //主函数,页面加载完成触发
    function main() {
        //获取canvas对象
        var canvas = document.getElementById("canvas");

        //获取WebGL上下文
        var gl = getWebGLContext(canvas);
        if (!gl) {
            console("您的浏览器不支持WebGL");
            return;
        }

        //初始化着色器
        if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {
            console.log("初始化着色器失败");
            return;
        }

        //设置顶点的坐标、颜色和法向量
        var n = initVertexBuffers(gl);
        if (n < 0) {
            console.log("无法获取到顶点个数,设置顶点坐标、颜色和法向量失败");
            return;
        }

        //初始化背景色和前后关系功能开启
        gl.clearColor(0, 0, 0, 1);
        gl.enable(gl.DEPTH_TEST);

        //获取模型视图投影矩阵、光线颜色变量和归一化世界坐标uniform变量的存储位置
        var u_MvpMatrix = gl.getUniformLocation(gl.program, "u_MvpMatrix");
        var u_LightColor = gl.getUniformLocation(gl.program, "u_LightColor");
        var u_LightDirection = gl.getUniformLocation(gl.program, "u_LightDirection");
        var u_AmbientLight = gl.getUniformLocation(gl.program, "u_AmbientLight");
        if (!u_MvpMatrix || !u_LightColor || !u_LightDirection || !u_AmbientLight) {
            console.log("无法获取相关的存储位置,或者未定义");
            return;
        }

        //设置光线颜色(白色)
        gl.uniform3f(u_LightColor, 1.0, 1.0, 1.0);
        //设置光线方向(世界坐标系下的)
        var lightDirection = new Vector3([0.5, 3.0, 4.0]);
        lightDirection.normalize(); //归一化
        gl.uniform3fv(u_LightDirection, lightDirection.elements);
        //设置环境光颜色
        gl.uniform3f(u_AmbientLight,0.2,0.2,0.2);

        //计算模型视图投影矩阵
        var mvpMatrix = new Matrix4(); //声明一个矩阵模型
        mvpMatrix.setPerspective(30, canvas.width / canvas.height, 1, 100);//设置透视矩阵
        mvpMatrix.lookAt(3, 3, 7, 0, 0, 0, 0, 1, 0);

        //将模型视图投影矩阵传给u_MvpMatrix变量
        gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);

        //清除底色和深度缓冲区
        gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

        gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0); //绘制图形
    }

    function initVertexBuffers(gl) {
        // 绘制一个立方体
        //    v6----- v5
        //   /|      /|
        //  v1------v0|
        //  | |     | |
        //  | |v7---|-|v4
        //  |/      |/
        //  v2------v3
        var vertices = new Float32Array([   // 顶点坐标
            1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, // v0-v1-v2-v3 front
            1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, // v0-v3-v4-v5 right
            1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, // v0-v5-v6-v1 up
            -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, // v1-v6-v7-v2 left
            -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, -1.0, -1.0, 1.0, // v7-v4-v3-v2 down
            1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0  // v4-v7-v6-v5 back
        ]);


        var colors = new Float32Array([    // 顶点颜色
            1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,     // v0-v1-v2-v3 front
            1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,     // v0-v3-v4-v5 right
            1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,     // v0-v5-v6-v1 up
            1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,     // v1-v6-v7-v2 left
            1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,     // v7-v4-v3-v2 down
            1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0     // v4-v7-v6-v5 back
        ]);

        var normals = new Float32Array([    // 法向量
            0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0,  // v0-v1-v2-v3 front
            1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0,  // v0-v3-v4-v5 right
            0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0,  // v0-v5-v6-v1 up
            -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0,  // v1-v6-v7-v2 left
            0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0,  // v7-v4-v3-v2 down
            0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0   // v4-v7-v6-v5 back
        ]);


        // 绘制点的顺序下标
        var indices = new Uint8Array([
            0, 1, 2, 0, 2, 3,    // front
            4, 5, 6, 4, 6, 7,    // right
            8, 9, 10, 8, 10, 11,    // up
            12, 13, 14, 12, 14, 15,    // left
            16, 17, 18, 16, 18, 19,    // down
            20, 21, 22, 20, 22, 23     // back
        ]);


        // 通过initArrayBuffer方法将顶点数据保存到缓冲区
        if (!initArrayBuffer(gl, 'a_Position', vertices, 3, gl.FLOAT)) return -1;
        if (!initArrayBuffer(gl, 'a_Color', colors, 3, gl.FLOAT)) return -1;
        if (!initArrayBuffer(gl, 'a_Normal', normals, 3, gl.FLOAT)) return -1;

        // 创建顶点索引缓冲区对象
        var indexBuffer = gl.createBuffer();
        if (!indexBuffer) {
            console.log('无法创建顶点索引的缓冲区对象');
            return -1;
        }

        //将顶点索引数据存入缓冲区
        gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
        gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);

        return indices.length;
    }

    function initArrayBuffer(gl, attribute, data, num, type) {
        //创建缓冲区对象
        var buffer = gl.createBuffer();
        if (!buffer) {
            console.log("无法创建缓冲区对象");
            return false;
        }
        //绑定缓冲区,并将数据存入缓冲区
        gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
        gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);

        //获取相关变量存储位置,赋值并开启缓冲区
        var a_attribute = gl.getAttribLocation(gl.program, attribute);
        if (a_attribute < 0) {
            console.log("无法获取" + attribute + "变量的相关位置");
            return false;
        }

        //向缓冲区赋值
        gl.vertexAttribPointer(a_attribute, num, type, false, 0, 0);

        //开启数据,并解绑缓冲区
        gl.enableVertexAttribArray(a_attribute);
        gl.bindBuffer(gl.ARRAY_BUFFER, null);

        return true;
    }
</script>
</html>
通过上面提高的两个运算,我们可以轻松的解决环境光反射的问题。

所以在顶点着色器里面,多声明了一个uniform变量u_AmbientLight来接收环境光的颜色值,然后通过运算,得出最后的颜色。

        //计算漫反射光的颜色
        "   vec3 diffuse = u_LightColor * vec3(a_Color) * nDotL;\n" +
        //计算环境光产生的反射光颜色
        "   vec3 ambient = u_AmbientLight * a_Color.rgb;\n" +
        //将以上两者相加得到物体最终的颜色
        "   v_Color = vec4(diffuse+ambient,a_Color.a);\n" +
而在js代码中,也只是多了一个给u_AmbientLight赋值的代码