cf1072B. Curiosity Has No Limits(枚举)
程序员文章站
2022-03-10 15:10:25
题意 "题目链接" 给出两个序列$a, b$,求出一个序列$t$,满足 $$a_i = t_i | t_{i + 1}$$ $$b_i = t_i \& t_{i + 1}$$ 同时,$0 \leqslant a_i, b_i, t_i \leqslant 3$ Sol 打比赛的时候想到了拆位,从此 ......
题意
给出两个序列\(a, b\),求出一个序列\(t\),满足
\[a_i = t_i | t_{i + 1}\]
\[b_i = t_i \& t_{i + 1}\]
同时,\(0 \leqslant a_i, b_i, t_i \leqslant 3\)
sol
打比赛的时候想到了拆位,从此走上不归路。。。
显然,当最后一位确定了之后,其他的数也都跟着确定了,。。
所以暴力枚举每个位置上是哪个数就行。。
/* */ #include<bits/stdc++.h> #define pair pair<int, int> #define mp(x, y) make_pair(x, y) #define fi first #define se second //#define int long long #define ll long long #define rg register #define pt(x) printf("%d ", x); #define fin(x) {freopen(#x".in","r",stdin);} #define fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int maxn = 1e6 + 10, inf = 1e9 + 10, mod = 1e9 + 7, b = 1; const double eps = 1e-9; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int n, a[maxn], b[maxn], f[maxn]; void solve(int val) { f[n] = val; for(int i = n - 1; i >= 1; i--) { bool flag = 0; for(int j = 0; j <= 3; j++) { int nx = f[i + 1]; f[i] = j; if((a[i] == (f[i] | f[i + 1])) && (b[i] == (f[i] & f[i + 1]))) {flag = 1; break;} } if(!flag) return ; } puts("yes"); for(int i = 1; i <= n; i++) printf("%d ", f[i]); exit(0); } main() { //fin(a); n = read(); for(int i = 1; i <= n - 1; i++) a[i] = read(); for(int i = 1; i <= n - 1; i++) b[i] = read(); solve(0); solve(1); solve(2); solve(3); puts("no"); return 0; } /* */
上一篇: JNI-C