欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

彻底弄懂Redis的LRU淘汰策略

程序员文章站 2022-06-09 23:50:10
目录redis的淘汰策略lru算法简介实现思想推导巧用linkedhashmap手写lru第一步:构建doublelinkedlist对象第二步:构建节点第三步:初始化doublelinkedlist...

今天我们这篇文章的目的是要 搞懂lru淘汰策略 以及 实现一个lru算法 。

文章会结合图解循序渐进的讲解,跟着我的思路慢慢来就能看懂,我们开始吧。

文章导读

彻底弄懂Redis的LRU淘汰策略

redis的淘汰策略

为什么要有淘汰策略呢?

因为存储内存的空间是有限的,所以需要有淘汰的策略。

redis的清理内存淘汰策略有哪些呢?

彻底弄懂Redis的LRU淘汰策略

lru算法简介

lru是 least recently used 的缩写,即 最近最少使用 ,是一种常见的页面置换算法。

我们手机的后台窗口(苹果手机双击home的效果),他总是会把最近常用的窗口放在最前边,而最不常用的应用窗口,就排列在后边了,如果再加上只能放置n个应用窗口的限制,淘汰最不常用的最近最少用的应用窗口,那就是一个活生生的 lru 。

彻底弄懂Redis的LRU淘汰策略

实现思想推导

彻底弄懂Redis的LRU淘汰策略

手机应用案例

从上边的示意图,我们可以分析出这么几个点:

  • 有序;
  • 如果应用开满3个了,要淘汰最不常用的应用,每次新访问应用,需要把数据插入队头(按照业务可以设定左右哪一边是队头);
  • o(1)复杂度是我们查找数据的追求,我们什么结构能够实现快速的o(1)查找呢?

彻底弄懂Redis的LRU淘汰策略

推导图

通过上边的推导,我们就能得出, lru 算法核心是 hashmap + doublelinkedlist 。

思想搞明白了,我们接下来编码实现。

巧用linkedhashmap

我们查看java的 linkedhashmap 使用说明。

彻底弄懂Redis的LRU淘汰策略

linkedhashmap使用说明

翻译:这种map结构很适合构建lru缓存。

继承 linkedhashmap 实现 lru 算法:

public class lrudemo<k, v> extends linkedhashmap<k, v> {
    private int capacity;
 
    public lrudemo(int capacity) {
        super(capacity, 0.75f, true);
        this.capacity = capacity;
    }
 
    @override
    protected boolean removeeldestentry(map.entry<k, v> eldest) {
        return super.size() > capacity;
    }
 
    public static void main(string[] args) {
        lrudemo lrudemo = new lrudemo(3);
        lrudemo.put(1, "a");
        lrudemo.put(2, "b");
        lrudemo.put(3, "c");
        system.out.println(lrudemo.keyset());
 
        lrudemo.put(4, "d");
        lrudemo.put(5, "e");
        system.out.println(lrudemo.keyset());
    }
}

重点讲解:

构造方法: super(capacity, 0.75f, true) ,主要看第三个参数:

彻底弄懂Redis的LRU淘汰策略

order参数

true -> access-order // false -> insertion-order 即按照访问时间排序,还是按照插入的时间来排序

// 构造方法改成false
super(capacity, 0.75f, false);
// 使用示例
public static void main(string[] args) {
  lrudemo lrudemo = new lrudemo(3);
  lrudemo.put(1, "a");
  lrudemo.put(2, "b");
  lrudemo.put(3, "c");
  system.out.println(lrudemo.keyset());
 
  lrudemo.put(1, "y");
  // 构造方法order=true,输出:[2,3,1],
  // 构造方法order=false,输出:[1,2,3],
  system.out.println(lrudemo.keyset());
}

removeeldestentry 方法:什么时候移除最年长的元素。

通过上面,相信大家对 lru 算法有所理解了,接下来我们不依赖jdk的 linkedhashmap ,通过我们自己的理解,动手实现一个 lru 算法,让我们的 lru 算法刻入我们的大脑。

手写lru

上边的推导图中可以看出,我们用 hashmap 来做具体的数据储存,但是我们还需要构造一个 doublelinkedlist 对象(结构体)来储存 hashmap 的具体 key 顺序关系。

第一步:构建doublelinkedlist对象

所以我们现在 第一步 ,就是构建一个 doublelinkedlist 对象:

彻底弄懂Redis的LRU淘汰策略

doublelinkedlist示意图

我们可以从 hashmap 源码中找一些灵感,他们都是使用一个 node 静态内部类来储存节点的值。

第二步:构建节点

通过上边的示意图,我们可以得知 节点 应该要储存的内容:

  • key
  • value
  • prev节点
  • next节点

翻译成代码:

class node<k, v> {
    k key;
    v value;
    node<k, v> prev;
    node<k, v> next;
 
    public node() {
        this.prev = this.next = null;
    }
 
    public node(k key, v value) {
        this.key = key;
        this.value = value;
        this.prev = this.next = null;
    }
}

第三步:初始化doublelinkedlist对象

彻底弄懂Redis的LRU淘汰策略

doublelinkedlist初始化示意图

还是通过上边的示意图,我们可以得知 doublelinkedlist对象 应该要储存的内容:

  • 头节点
  • 尾节点

翻译成代码:

class doublelinkedlist<k, v> {
    node<k, v> head;
    node<k, v> tail;
 
    // 构造方法
    public doublelinkedlist(){
        head = new node<>();
        tail = new node<>();
        head.next = tail;
        tail.prev = head;
    }
}

从头添加节点

彻底弄懂Redis的LRU淘汰策略

从头添加节点

翻译成代码:

public void addhead(node<k, v> node) {
    node.next = head.next;
    node.prev = head;
    head.next.prev = node;
    head.next = node;
}

删除节点

彻底弄懂Redis的LRU淘汰策略

删除节点

翻译成代码:

public void removenode(node<k, v> node) {
    node.next.prev = node.prev;
    node.prev.next = node.next;
    node.prev = null;
    node.next = null;
}

获取最后一个节点

public node getlast() {
    return tail.prev;
}

第四步:lru对象属性

cachesize

private int cachesize;

map

map<integer, node<integer, string>> map;

doublelinkedlist

doublelinkedlist<integer, string> doublelinkedlist;

第五步:lru对象的方法

构造方法

public lrudemo(int cachesize) {
    this.cachesize = cachesize;
    map = new hashmap<>();
    doublelinkedlist = new doublelinkedlist<>();
}

refreshnode刷新节点

public void refreshnode(node node) {
    doublelinkedlist.removenode(node);
    doublelinkedlist.addhead(node);
}

get节点

public string get(int key) {
    if (!map.containskey(key)) {
        return "";
    }
 
    node<integer, string> node = map.get(key);
    refreshnode(node);
    return node.value;
}

put节点

public void put(int key, string value) {
    if (map.containskey(key)) {
        node<integer, string> node = map.get(key);
        node.value = value;
        map.put(key, node);
 
        refreshnode(node);
    } else {
        if (map.size() == cachesize) {
            node lastnode = doublelinkedlist.getlast();
            map.remove(lastnode.key);
            doublelinkedlist.removenode(lastnode);
        }
 
        node<integer, string> newnode = new node<>(key, value);
        map.put(key, newnode);
        doublelinkedlist.addhead(newnode);
    }
}

第六步:测试

public static void main(string[] args) {
    lrudemo lrudemo = new lrudemo(3);
    lrudemo.put(1, "美团");
    lrudemo.put(2, "微信");
    lrudemo.put(3, "抖音");
    lrudemo.put(4, "微博");
    system.out.println(lrudemo.map.keyset());
 
    system.out.println(lrudemo.get(2));
}

总结

lru 算法到这里就写完啦,完整的代码可以从阅读原文的链接地址获取。

到此这篇关于彻底弄懂redis的lru淘汰策略的文章就介绍到这了,更多相关redis lru淘汰策略内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!