Redis中LFU算法的深入分析
前言
在redis中的lru算法文中说到,lru有一个缺陷,在如下情况下:
~~~~~a~~~~~a~~~~~a~~~~a~~~~~a~~~~~a~~|
~~b~~b~~b~~b~~b~~b~~b~~b~~b~~b~~b~~b~|
~~~~~~~~~~c~~~~~~~~~c~~~~~~~~~c~~~~~~|
~~~~~d~~~~~~~~~~d~~~~~~~~~d~~~~~~~~~d|
会将数据d误认为将来最有可能被访问到的数据。
redis作者曾想改进lru算法,但发现redis的lru算法受制于随机采样数maxmemory_samples,在maxmemory_samples等于10的情况下已经很接近于理想的lru算法性能,也就是说,lru算法本身已经很难再进一步了。
于是,将思路回到原点,淘汰算法的本意是保留那些将来最有可能被再次访问的数据,而lru算法只是预测最近被访问的数据将来最有可能被访问到。我们可以转变思路,采用一种lfu(least frequently used)算法,也就是最频繁被访问的数据将来最有可能被访问到。在上面的情况中,根据访问频繁情况,可以确定保留优先级:b>a>c=d。
redis中的lfu思路
在lfu算法中,可以为每个key维护一个计数器。每次key被访问的时候,计数器增大。计数器越大,可以约等于访问越频繁。
上述简单算法存在两个问题:
- 在lru算法中可以维护一个双向链表,然后简单的把被访问的节点移至链表开头,但在lfu中是不可行的,节点要严格按照计数器进行排序,新增节点或者更新节点位置时,时间复杂度可能达到o(n)。
- 只是简单的增加计数器的方法并不完美。访问模式是会频繁变化的,一段时间内频繁访问的key一段时间之后可能会很少被访问到,只增加计数器并不能体现这种趋势。
第一个问题很好解决,可以借鉴lru实现的经验,维护一个待淘汰key的pool。第二个问题的解决办法是,记录key最后一个被访问的时间,然后随着时间推移,降低计数器。
redis对象的结构如下:
typedef struct redisobject { unsigned type:4; unsigned encoding:4; unsigned lru:lru_bits; /* lru time (relative to global lru_clock) or * lfu data (least significant 8 bits frequency * and most significant 16 bits access time). */ int refcount; void *ptr; } robj;
在lru算法中,24 bits的lru是用来记录lru time的,在lfu中也可以使用这个字段,不过是分成16 bits与8 bits使用:
16 bits 8 bits +----------------+--------+ + last decr time | log_c | +----------------+--------+
高16 bits用来记录最近一次计数器降低的时间ldt,单位是分钟,低8 bits记录计数器数值counter。
lfu配置
redis4.0之后为maxmemory_policy淘汰策略添加了两个lfu模式:
- volatile-lfu:对有过期时间的key采用lfu淘汰算法
- allkeys-lfu:对全部key采用lfu淘汰算法
还有2个配置可以调整lfu算法:
lfu-log-factor 10 lfu-decay-time 1
lfu-log-factor可以调整计数器counter的增长速度,lfu-log-factor越大,counter增长的越慢。
lfu-decay-time是一个以分钟为单位的数值,可以调整counter的减少速度
源码实现
在lookupkey中:
robj *lookupkey(redisdb *db, robj *key, int flags) { dictentry *de = dictfind(db->dict,key->ptr); if (de) { robj *val = dictgetval(de); /* update the access time for the ageing algorithm. * don't do it if we have a saving child, as this will trigger * a copy on write madness. */ if (server.rdb_child_pid == -1 && server.aof_child_pid == -1 && !(flags & lookup_notouch)) { if (server.maxmemory_policy & maxmemory_flag_lfu) { updatelfu(val); } else { val->lru = lru_clock(); } } return val; } else { return null; } }
当采用lfu策略时,updatelfu更新lru:
/* update lfu when an object is accessed. * firstly, decrement the counter if the decrement time is reached. * then logarithmically increment the counter, and update the access time. */ void updatelfu(robj *val) { unsigned long counter = lfudecrandreturn(val); counter = lfulogincr(counter); val->lru = (lfugettimeinminutes()<<8) | counter; }
降低lfudecrandreturn
首先,lfudecrandreturn对counter进行减少操作:
/* if the object decrement time is reached decrement the lfu counter but * do not update lfu fields of the object, we update the access time * and counter in an explicit way when the object is really accessed. * and we will times halve the counter according to the times of * elapsed time than server.lfu_decay_time. * return the object frequency counter. * * this function is used in order to scan the dataset for the best object * to fit: as we check for the candidate, we incrementally decrement the * counter of the scanned objects if needed. */ unsigned long lfudecrandreturn(robj *o) { unsigned long ldt = o->lru >> 8; unsigned long counter = o->lru & 255; unsigned long num_periods = server.lfu_decay_time ? lfutimeelapsed(ldt) / server.lfu_decay_time : 0; if (num_periods) counter = (num_periods > counter) ? 0 : counter - num_periods; return counter; }
函数首先取得高16 bits的最近降低时间ldt与低8 bits的计数器counter,然后根据配置的lfu_decay_time计算应该降低多少。
lfutimeelapsed用来计算当前时间与ldt的差值:
/* return the current time in minutes, just taking the least significant * 16 bits. the returned time is suitable to be stored as ldt (last decrement * time) for the lfu implementation. */ unsigned long lfugettimeinminutes(void) { return (server.unixtime/60) & 65535; } /* given an object last access time, compute the minimum number of minutes * that elapsed since the last access. handle overflow (ldt greater than * the current 16 bits minutes time) considering the time as wrapping * exactly once. */ unsigned long lfutimeelapsed(unsigned long ldt) { unsigned long now = lfugettimeinminutes(); if (now >= ldt) return now-ldt; return 65535-ldt+now; }
具体是当前时间转化成分钟数后取低16 bits,然后计算与ldt的差值now-ldt。当ldt > now时,默认为过了一个周期(16 bits,最大65535),取值65535-ldt+now。
然后用差值与配置lfu_decay_time相除,lfutimeelapsed(ldt) / server.lfu_decay_time,已过去n个lfu_decay_time,则将counter减少n,counter - num_periods。
增长lfulogincr
增长函数lfulogincr如下:
/* logarithmically increment a counter. the greater is the current counter value * the less likely is that it gets really implemented. saturate it at 255. */ uint8_t lfulogincr(uint8_t counter) { if (counter == 255) return 255; double r = (double)rand()/rand_max; double baseval = counter - lfu_init_val; if (baseval < 0) baseval = 0; double p = 1.0/(baseval*server.lfu_log_factor+1); if (r < p) counter++; return counter; }
counter并不是简单的访问一次就+1,而是采用了一个0-1之间的p因子控制增长。counter最大值为255。取一个0-1之间的随机数r与p比较,当r<p时,才增加counter,这和比特币中控制产出的策略类似。p取决于当前counter值与lfu_log_factor因子,counter值与lfu_log_factor因子越大,p越小,r<p的概率也越小,counter增长的概率也就越小。增长情况如下:
+--------+------------+------------+------------+------------+------------+
| factor | 100 hits | 1000 hits | 100k hits | 1m hits | 10m hits |
+--------+------------+------------+------------+------------+------------+
| 0 | 104 | 255 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 1 | 18 | 49 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 10 | 10 | 18 | 142 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 100 | 8 | 11 | 49 | 143 | 255 |
+--------+------------+------------+------------+------------+------------+
可见counter增长与访问次数呈现对数增长的趋势,随着访问次数越来越大,counter增长的越来越慢。
新生key策略
另外一个问题是,当创建新对象的时候,对象的counter如果为0,很容易就会被淘汰掉,还需要为新生key设置一个初始counter,createobject:
robj *createobject(int type, void *ptr) { robj *o = zmalloc(sizeof(*o)); o->type = type; o->encoding = obj_encoding_raw; o->ptr = ptr; o->refcount = 1; /* set the lru to the current lruclock (minutes resolution), or * alternatively the lfu counter. */ if (server.maxmemory_policy & maxmemory_flag_lfu) { o->lru = (lfugettimeinminutes()<<8) | lfu_init_val; } else { o->lru = lru_clock(); } return o; }
counter会被初始化为lfu_init_val,默认5。
pool
pool算法就与lru算法一致了:
if (server.maxmemory_policy & (maxmemory_flag_lru|maxmemory_flag_lfu) || server.maxmemory_policy == maxmemory_volatile_ttl)
计算idle时有所不同:
} else if (server.maxmemory_policy & maxmemory_flag_lfu) { /* when we use an lru policy, we sort the keys by idle time * so that we expire keys starting from greater idle time. * however when the policy is an lfu one, we have a frequency * estimation, and we want to evict keys with lower frequency * first. so inside the pool we put objects using the inverted * frequency subtracting the actual frequency to the maximum * frequency of 255. */ idle = 255-lfudecrandreturn(o);
使用了255-lfudecrandreturn(o)当做排序的依据。
参考链接
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。