安卓AES加解密
程序员文章站
2022-06-09 19:22:40
import android.annotation.SuppressLint;import android.os.Build;import android.support.annotation.IntDef;import android.support.annotation.RequiresApi;import android.text.TextUtils;import java.io.UnsupportedEncodingException;import java.nio.charse......
import android.annotation.SuppressLint;
import android.os.Build;
import android.support.annotation.IntDef;
import android.support.annotation.RequiresApi;
import android.text.TextUtils;
import java.io.UnsupportedEncodingException;
import java.nio.charset.StandardCharsets;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.Provider;
import java.security.SecureRandom;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.SecretKeySpec;
/**
* by y on 22/11/2017.
*/
public class AESUtils {
private final static String SHA1_PRNG = "SHA1PRNG";
private static final int KEY_SIZE = 32;
/**
* Aes加密/解密
*
* @param content 字符串
* @param password 密钥
* @param type 加密:{@link Cipher#ENCRYPT_MODE},解密:{@link Cipher#DECRYPT_MODE}
* @return 加密/解密结果字符串
*/
@SuppressLint({"DeletedProvider", "GetInstance"})
public static String des(String content, String password, @AESType int type) {
if (TextUtils.isEmpty(content) || TextUtils.isEmpty(password)) {
return null;
}
try {
SecretKeySpec secretKeySpec;
if (Build.VERSION.SDK_INT >= 28) {
secretKeySpec = deriveKeyInsecurely(password);
} else {
secretKeySpec = fixSmallVersion(password);
}
Cipher cipher = Cipher.getInstance("AES");
cipher.init(type, secretKeySpec);
if (type == Cipher.ENCRYPT_MODE) {
byte[] byteContent = content.getBytes("utf-8");
return parseByte2HexStr(cipher.doFinal(byteContent));
} else {
byte[] byteContent = parseHexStr2Byte(content);
return new String(cipher.doFinal(byteContent), "utf-8");
}
} catch (NoSuchAlgorithmException | BadPaddingException | IllegalBlockSizeException |
UnsupportedEncodingException | InvalidKeyException | NoSuchPaddingException |
NoSuchProviderException e) {
e.printStackTrace();
}
return null;
}
@SuppressLint("DeletedProvider")
private static SecretKeySpec fixSmallVersion(String password) throws NoSuchAlgorithmException, NoSuchProviderException {
KeyGenerator generator = KeyGenerator.getInstance("AES");
SecureRandom secureRandom;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.N) {
secureRandom = SecureRandom.getInstance(SHA1_PRNG, new CryptoProvider());
} else {
secureRandom = SecureRandom.getInstance(SHA1_PRNG, "Crypto");
}
secureRandom.setSeed(password.getBytes());
generator.init(128, secureRandom);
byte[] enCodeFormat = generator.generateKey().getEncoded();
return new SecretKeySpec(enCodeFormat, "AES");
}
@RequiresApi(api = Build.VERSION_CODES.KITKAT)
private static SecretKeySpec deriveKeyInsecurely(String password) {
byte[] passwordBytes = password.getBytes(StandardCharsets.US_ASCII);
return new SecretKeySpec(InsecureSHA1PRNGKeyDerivator.deriveInsecureKey(passwordBytes, AESUtils.KEY_SIZE), "AES");
}
private static String parseByte2HexStr(byte buf[]) {
StringBuilder sb = new StringBuilder();
for (byte b : buf) {
String hex = Integer.toHexString(b & 0xFF);
if (hex.length() == 1) {
hex = '0' + hex;
}
sb.append(hex.toUpperCase());
}
return sb.toString();
}
private static byte[] parseHexStr2Byte(String hexStr) {
if (hexStr.length() < 1) return null;
byte[] result = new byte[hexStr.length() / 2];
for (int i = 0; i < hexStr.length() / 2; i++) {
int high = Integer.parseInt(hexStr.substring(i * 2, i * 2 + 1), 16);
int low = Integer.parseInt(hexStr.substring(i * 2 + 1, i * 2 + 2), 16);
result[i] = (byte) (high * 16 + low);
}
return result;
}
@IntDef({Cipher.ENCRYPT_MODE, Cipher.DECRYPT_MODE})
@interface AESType {
}
private static final class CryptoProvider extends Provider {
CryptoProvider() {
super("Crypto", 1.0, "HARMONY (SHA1 digest; SecureRandom; SHA1withDSA signature)");
put("SecureRandom.SHA1PRNG", "org.apache.harmony.security.provider.crypto.SHA1PRNG_SecureRandomImpl");
put("SecureRandom.SHA1PRNG ImplementedIn", "Software");
}
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Stripped-down version of the SHA1PRNG provided by the Crypto provider.
* <p>
* The Crypto provider that offers this functionality was deprecated on Android.
* <p>
* Use this class only to retrieve encrypted data that couldn't be retrieved otherwise.
*/
public class InsecureSHA1PRNGKeyDerivator {
/**
* Only public method. Derive a key from the given seed.
* <p>
* Use this method only to retrieve encrypted data that couldn't be retrieved otherwise.
*
* @param seed seed used for the random generator, usually coming from a password
* @param keySizeInBytes length of the array returned
*/
public static byte[] deriveInsecureKey(byte[] seed, int keySizeInBytes) {
InsecureSHA1PRNGKeyDerivator derivator = new InsecureSHA1PRNGKeyDerivator();
derivator.setSeed(seed);
byte[] key = new byte[keySizeInBytes];
derivator.nextBytes(key);
return key;
}
// constants to use in expressions operating on bytes in int and long variables:
// END_FLAGS - final bytes in words to append to message;
// see "ch.5.1 Padding the Message, FIPS 180-2"
// RIGHT1 - shifts to right for left half of long
// RIGHT2 - shifts to right for right half of long
// LEFT - shifts to left for bytes
// MASK - mask to select counter's bytes after shift to right
private static final int[] END_FLAGS = {0x80000000, 0x800000, 0x8000, 0x80};
private static final int[] RIGHT1 = {0, 40, 48, 56};
private static final int[] RIGHT2 = {0, 8, 16, 24};
private static final int[] LEFT = {0, 24, 16, 8};
private static final int[] MASK = {0xFFFFFFFF, 0x00FFFFFF, 0x0000FFFF,
0x000000FF};
// HASHBYTES_TO_USE defines # of bytes returned by "computeHash(byte[])"
// to use to form byte array returning by the "nextBytes(byte[])" method
// Note, that this implementation uses more bytes than it is defined
// in the above specification.
private static final int HASHBYTES_TO_USE = 20;
// value of 16 defined in the "SECURE HASH STANDARD", FIPS PUB 180-2
private static final int FRAME_LENGTH = 16;
// miscellaneous constants defined in this implementation:
// COUNTER_BASE - initial value to set to "counter" before computing "nextBytes(..)";
// note, that the exact value is not defined in STANDARD
// HASHCOPY_OFFSET - offset for copy of current hash in "copies" array
// EXTRAFRAME_OFFSET - offset for extra frame in "copies" array;
// as the extra frame follows the current hash frame,
// EXTRAFRAME_OFFSET is equal to length of current hash frame
// FRAME_OFFSET - offset for frame in "copies" array
// MAX_BYTES - maximum # of seed bytes processing which doesn't require extra frame
// see (1) comments on usage of "seed" array below and
// (2) comments in "engineNextBytes(byte[])" method
//
// UNDEFINED - three states of engine; initially its state is "UNDEFINED"
// SET_SEED call to "engineSetSeed" sets up "SET_SEED" state,
// NEXT_BYTES call to "engineNextByte" sets up "NEXT_BYTES" state
private static final int COUNTER_BASE = 0;
private static final int HASHCOPY_OFFSET = 0;
private static final int EXTRAFRAME_OFFSET = 5;
private static final int FRAME_OFFSET = 21;
private static final int MAX_BYTES = 48;
private static final int UNDEFINED = 0;
private static final int SET_SEED = 1;
private static final int NEXT_BYTES = 2;
// Structure of "seed" array:
// - 0-79 - words for computing hash
// - 80 - unused
// - 81 - # of seed bytes in current seed frame
// - 82-86 - 5 words, current seed hash
private transient int[] seed;
// total length of seed bytes, including all processed
private transient long seedLength;
// Structure of "copies" array
// - 0-4 - 5 words, copy of current seed hash
// - 5-20 - extra 16 words frame;
// is used if final padding exceeds 512-bit length
// - 21-36 - 16 word frame to store a copy of remaining bytes
private transient int[] copies;
// ready "next" bytes; needed because words are returned
private transient byte[] nextBytes;
// index of used bytes in "nextBytes" array
private transient int nextBIndex;
// variable required according to "SECURE HASH STANDARD"
private transient long counter;
// contains int value corresponding to engine's current state
private transient int state;
/**
* constant defined in "SECURE HASH STANDARD"
*/
private static final int H0 = 0x67452301;
/**
* constant defined in "SECURE HASH STANDARD"
*/
private static final int H1 = 0xEFCDAB89;
/**
* constant defined in "SECURE HASH STANDARD"
*/
private static final int H2 = 0x98BADCFE;
/**
* constant defined in "SECURE HASH STANDARD"
*/
private static final int H3 = 0x10325476;
/**
* constant defined in "SECURE HASH STANDARD"
*/
private static final int H4 = 0xC3D2E1F0;
/**
* offset in buffer to store number of bytes in 0-15 word frame
*/
private static final int BYTES_OFFSET = 81;
/**
* offset in buffer to store current hash value
*/
private static final int HASH_OFFSET = 82;
/**
* # of bytes in H0-H4 words; <BR>
* in this implementation # is set to 20 (in general # varies from 1 to 20)
*/
private static final int DIGEST_LENGTH = 20;
// The "seed" array is used to compute both "current seed hash" and "next bytes".
//
// As the "SHA1" algorithm computes a hash of entire seed by splitting it into
// a number of the 512-bit length frames (512 bits = 64 bytes = 16 words),
// "current seed hash" is a hash (5 words, 20 bytes) for all previous full frames;
// remaining bytes are stored in the 0-15 word frame of the "seed" array.
//
// As for calculating "next bytes",
// both remaining bytes and "current seed hash" are used,
// to preserve the latter for following "setSeed(..)" commands,
// the following technique is used:
// - upon getting "nextBytes(byte[])" invoked, single or first in row,
// which requires computing new hash, that is,
// there is no more bytes remaining from previous "next bytes" computation,
// remaining bytes are copied into the 21-36 word frame of the "copies" array;
// - upon getting "setSeed(byte[])" invoked, single or first in row,
// remaining bytes are copied back.
private InsecureSHA1PRNGKeyDerivator() {
seed = new int[HASH_OFFSET + EXTRAFRAME_OFFSET];
seed[HASH_OFFSET] = H0;
seed[HASH_OFFSET + 1] = H1;
seed[HASH_OFFSET + 2] = H2;
seed[HASH_OFFSET + 3] = H3;
seed[HASH_OFFSET + 4] = H4;
seedLength = 0;
copies = new int[2 * FRAME_LENGTH + EXTRAFRAME_OFFSET];
nextBytes = new byte[DIGEST_LENGTH];
nextBIndex = HASHBYTES_TO_USE;
counter = COUNTER_BASE;
state = UNDEFINED;
}
/*
* The method invokes the SHA1Impl's "updateHash(..)" method
* to update current seed frame and
* to compute new intermediate hash value if the frame is full.
*
* After that it computes a length of whole seed.
*/
private void updateSeed(byte[] bytes) {
// on call: "seed" contains current bytes and current hash;
// on return: "seed" contains new current bytes and possibly new current hash
// if after adding, seed bytes overfill its buffer
updateHash(seed, bytes, 0, bytes.length - 1);
seedLength += bytes.length;
}
/**
* Changes current seed by supplementing a seed argument to the current seed,
* if this already set;
* the argument is used as first seed otherwise. <BR>
* <p>
* The method overrides "engineSetSeed(byte[])" in class SecureRandomSpi.
*
* @param seed - byte array
* @throws NullPointerException - if null is passed to the "seed" argument
*/
private void setSeed(byte[] seed) {
if (seed == null) {
throw new NullPointerException("seed == null");
}
if (state == NEXT_BYTES) { // first setSeed after NextBytes; restoring hash
System.arraycopy(copies, HASHCOPY_OFFSET, this.seed, HASH_OFFSET,
EXTRAFRAME_OFFSET);
}
state = SET_SEED;
if (seed.length != 0) {
updateSeed(seed);
}
}
/**
* Writes random bytes into an array supplied.
* Bits in a byte are from left to right. <BR>
* <p>
* To generate random bytes, the "expansion of source bits" method is used,
* that is,
* the current seed with a 64-bit counter appended is used to compute new bits.
* The counter is incremented by 1 for each 20-byte output. <BR>
* <p>
* The method overrides engineNextBytes in class SecureRandomSpi.
*
* @param bytes - byte array to be filled in with bytes
* @throws NullPointerException - if null is passed to the "bytes" argument
*/
protected synchronized void nextBytes(byte[] bytes) {
int i, n;
long bits; // number of bits required by Secure Hash Standard
int nextByteToReturn; // index of ready bytes in "bytes" array
int lastWord; // index of last word in frame containing bytes
// This is a bug since words are 4 bytes. Android used to keep it this way for backward
// compatibility.
final int extrabytes = 7;// # of bytes to add in order to computer # of 8 byte words
if (bytes == null) {
throw new NullPointerException("bytes == null");
}
// This is a bug since extraBytes == 7 instead of 3. Android used to keep it this way for
// backward compatibility.
lastWord = seed[BYTES_OFFSET] == 0 ? 0
: (seed[BYTES_OFFSET] + extrabytes) >> 3 - 1;
if (state == UNDEFINED) {
throw new IllegalStateException("No seed supplied!");
} else if (state == SET_SEED) {
System.arraycopy(seed, HASH_OFFSET, copies, HASHCOPY_OFFSET,
EXTRAFRAME_OFFSET);
// possible cases for 64-byte frame:
//
// seed bytes < 48 - remaining bytes are enough for all, 8 counter bytes,
// 0x80, and 8 seedLength bytes; no extra frame required
// 48 < seed bytes < 56 - remaining 9 bytes are for 0x80 and 8 counter bytes
// extra frame contains only seedLength value at the end
// seed bytes > 55 - extra frame contains both counter's bytes
// at the beginning and seedLength value at the end;
// note, that beginning extra bytes are not more than 8,
// that is, only 2 extra words may be used
// no need to set to "0" 3 words after "lastWord" and
// more than two words behind frame
for (i = lastWord + 3; i < FRAME_LENGTH + 2; i++) {
seed[i] = 0;
}
bits = (seedLength << 3) + 64; // transforming # of bytes into # of bits
// putting # of bits into two last words (14,15) of 16 word frame in
// seed or copies array depending on total length after padding
if (seed[BYTES_OFFSET] < MAX_BYTES) {
seed[14] = (int) (bits >>> 32);
seed[15] = (int) (bits & 0xFFFFFFFF);
} else {
copies[EXTRAFRAME_OFFSET + 14] = (int) (bits >>> 32);
copies[EXTRAFRAME_OFFSET + 15] = (int) (bits & 0xFFFFFFFF);
}
nextBIndex = HASHBYTES_TO_USE; // skipping remaining random bits
}
state = NEXT_BYTES;
if (bytes.length == 0) {
return;
}
nextByteToReturn = 0;
// possibly not all of HASHBYTES_TO_USE bytes were used previous time
n = Math.min((HASHBYTES_TO_USE - nextBIndex), (bytes.length - nextByteToReturn));
if (n > 0) {
System.arraycopy(nextBytes, nextBIndex, bytes, nextByteToReturn, n);
nextBIndex += n;
nextByteToReturn += n;
}
if (nextByteToReturn >= bytes.length) {
return; // return because "bytes[]" are filled in
}
n = seed[BYTES_OFFSET] & 0x03;
for (; ; ) {
if (n == 0) {
seed[lastWord] = (int) (counter >>> 32);
seed[lastWord + 1] = (int) (counter & 0xFFFFFFFF);
seed[lastWord + 2] = END_FLAGS[0];
} else {
seed[lastWord] |= (int) ((counter >>> RIGHT1[n]) & MASK[n]);
seed[lastWord + 1] = (int) ((counter >>> RIGHT2[n]) & 0xFFFFFFFF);
seed[lastWord + 2] = (int) ((counter << LEFT[n]) | END_FLAGS[n]);
}
if (seed[BYTES_OFFSET] > MAX_BYTES) {
copies[EXTRAFRAME_OFFSET] = seed[FRAME_LENGTH];
copies[EXTRAFRAME_OFFSET + 1] = seed[FRAME_LENGTH + 1];
}
computeHash(seed);
if (seed[BYTES_OFFSET] > MAX_BYTES) {
System.arraycopy(seed, 0, copies, FRAME_OFFSET, FRAME_LENGTH);
System.arraycopy(copies, EXTRAFRAME_OFFSET, seed, 0,
FRAME_LENGTH);
computeHash(seed);
System.arraycopy(copies, FRAME_OFFSET, seed, 0, FRAME_LENGTH);
}
counter++;
int j = 0;
for (i = 0; i < EXTRAFRAME_OFFSET; i++) {
int k = seed[HASH_OFFSET + i];
nextBytes[j] = (byte) (k >>> 24); // getting first byte from left
nextBytes[j + 1] = (byte) (k >>> 16); // getting second byte from left
nextBytes[j + 2] = (byte) (k >>> 8); // getting third byte from left
nextBytes[j + 3] = (byte) (k); // getting fourth byte from left
j += 4;
}
nextBIndex = 0;
j = HASHBYTES_TO_USE < (bytes.length - nextByteToReturn) ? HASHBYTES_TO_USE
: bytes.length - nextByteToReturn;
if (j > 0) {
System.arraycopy(nextBytes, 0, bytes, nextByteToReturn, j);
nextByteToReturn += j;
nextBIndex += j;
}
if (nextByteToReturn >= bytes.length) {
break;
}
}
}
/**
* The method generates a 160 bit hash value using
* a 512 bit message stored in first 16 words of int[] array argument and
* current hash value stored in five words, beginning OFFSET+1, of the array argument.
* Computation is done according to SHA-1 algorithm.
* <p>
* The resulting hash value replaces the previous hash value in the array;
* original bits of the message are not preserved.
* <p>
* No checks on argument supplied, that is,
* a calling method is responsible for such checks.
* In case of incorrect array passed to the method
* either NPE or IndexOutOfBoundException gets thrown by JVM.
*
* @params arrW - integer array; arrW.length >= (BYTES_OFFSET+6); <BR>
* only first (BYTES_OFFSET+6) words are used
*/
private static void computeHash(int[] arrW) {
int a = arrW[HASH_OFFSET];
int b = arrW[HASH_OFFSET + 1];
int c = arrW[HASH_OFFSET + 2];
int d = arrW[HASH_OFFSET + 3];
int e = arrW[HASH_OFFSET + 4];
int temp;
// In this implementation the "d. For t = 0 to 79 do" loop
// is split into four loops. The following constants:
// K = 5A827999 0 <= t <= 19
// K = 6ED9EBA1 20 <= t <= 39
// K = 8F1BBCDC 40 <= t <= 59
// K = CA62C1D6 60 <= t <= 79
// are hex literals in the loops.
for (int t = 16; t < 80; t++) {
temp = arrW[t - 3] ^ arrW[t - 8] ^ arrW[t - 14] ^ arrW[t - 16];
arrW[t] = (temp << 1) | (temp >>> 31);
}
for (int t = 0; t < 20; t++) {
temp = ((a << 5) | (a >>> 27)) +
((b & c) | ((~b) & d)) +
(e + arrW[t] + 0x5A827999);
e = d;
d = c;
c = (b << 30) | (b >>> 2);
b = a;
a = temp;
}
for (int t = 20; t < 40; t++) {
temp = (((a << 5) | (a >>> 27))) + (b ^ c ^ d) + (e + arrW[t] + 0x6ED9EBA1);
e = d;
d = c;
c = (b << 30) | (b >>> 2);
b = a;
a = temp;
}
for (int t = 40; t < 60; t++) {
temp = ((a << 5) | (a >>> 27)) + ((b & c) | (b & d) | (c & d)) +
(e + arrW[t] + 0x8F1BBCDC);
e = d;
d = c;
c = (b << 30) | (b >>> 2);
b = a;
a = temp;
}
for (int t = 60; t < 80; t++) {
temp = (((a << 5) | (a >>> 27))) + (b ^ c ^ d) + (e + arrW[t] + 0xCA62C1D6);
e = d;
d = c;
c = (b << 30) | (b >>> 2);
b = a;
a = temp;
}
arrW[HASH_OFFSET] += a;
arrW[HASH_OFFSET + 1] += b;
arrW[HASH_OFFSET + 2] += c;
arrW[HASH_OFFSET + 3] += d;
arrW[HASH_OFFSET + 4] += e;
}
/**
* The method appends new bytes to existing ones
* within limit of a frame of 64 bytes (16 words).
* <p>
* Once a length of accumulated bytes reaches the limit
* the "computeHash(int[])" method is invoked on the array to compute updated hash,
* and the number of bytes in the frame is set to 0.
* Thus, after appending all bytes, the array contain only those bytes
* that were not used in computing final hash value yet.
* <p>
* No checks on arguments passed to the method, that is,
* a calling method is responsible for such checks.
*
* @params intArray - int array containing bytes to which to append;
* intArray.length >= (BYTES_OFFSET+6)
* @params byteInput - array of bytes to use for the update
* @params from - the offset to start in the "byteInput" array
* @params to - a number of the last byte in the input array to use,
* that is, for first byte "to"==0, for last byte "to"==input.length-1
*/
private static void updateHash(int[] intArray, byte[] byteInput, int fromByte, int toByte) {
// As intArray contains a packed bytes
// the buffer's index is in the intArray[BYTES_OFFSET] element
int index = intArray[BYTES_OFFSET];
int i = fromByte;
int maxWord;
int nBytes;
int wordIndex = index >> 2;
int byteIndex = index & 0x03;
intArray[BYTES_OFFSET] = (index + toByte - fromByte + 1) & 077;
// In general case there are 3 stages :
// - appending bytes to non-full word,
// - writing 4 bytes into empty words,
// - writing less than 4 bytes in last word
if (byteIndex != 0) { // appending bytes in non-full word (as if)
for (; (i <= toByte) && (byteIndex < 4); i++) {
intArray[wordIndex] |= (byteInput[i] & 0xFF) << ((3 - byteIndex) << 3);
byteIndex++;
}
if (byteIndex == 4) {
wordIndex++;
if (wordIndex == 16) { // intArray is full, computing hash
computeHash(intArray);
wordIndex = 0;
}
}
if (i > toByte) { // all input bytes appended
return;
}
}
// writing full words
maxWord = (toByte - i + 1) >> 2; // # of remaining full words, may be "0"
for (int k = 0; k < maxWord; k++) {
intArray[wordIndex] = (((int) byteInput[i] & 0xFF) << 24) |
(((int) byteInput[i + 1] & 0xFF) << 16) |
(((int) byteInput[i + 2] & 0xFF) << 8) |
(((int) byteInput[i + 3] & 0xFF));
i += 4;
wordIndex++;
if (wordIndex < 16) { // buffer is not full yet
continue;
}
computeHash(intArray); // buffer is full, computing hash
wordIndex = 0;
}
// writing last incomplete word
// after writing free byte positions are set to "0"s
nBytes = toByte - i + 1;
if (nBytes != 0) {
int w = ((int) byteInput[i] & 0xFF) << 24;
if (nBytes != 1) {
w |= ((int) byteInput[i + 1] & 0xFF) << 16;
if (nBytes != 2) {
w |= ((int) byteInput[i + 2] & 0xFF) << 8;
}
}
intArray[wordIndex] = w;
}
return;
}
}
本文地址:https://blog.csdn.net/xiaoerbuyu1233/article/details/109645167
上一篇: 复合索引(转载)