欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

非正交多址技术NOMA基础知识

程序员文章站 2022-06-09 19:13:03
参考文章:5G:非正交多址接入技术(NOMA)5G:非正交多址技术(NOMA)的性能优势已经有了OFDM,为什么又发展了NOMA在过去20年中,随着移动通信技术飞速发展,技术标准不断演进,第四代移动通信技术(4G)以正交频分多址接入技术(OFDMA)为基础,其数据业务传输速率达到每秒百兆甚至千兆比特,能够在较大程度上满足今后一段时期内宽带移动通信应用需求。然而,随着智能终端普及应用及移动新......

参考文章:
5G:非正交多址接入技术(NOMA)
5G:非正交多址技术(NOMA)的性能优势
5G:非正交多址接入(NOMA)与串行干扰删除(SIC)
5G:非正交多址技术(NOMA)会被采用吗?亦或仍是OFDM?

已经有了OFDM,为什么又发展了NOMA

在过去20年中,随着移动通信技术飞速发展,技术标准不断演进,第四代移动通信技术(4G)以正交频分多址接入技术(OFDMA)为基础,其数据业务传输速率达到每秒百兆甚至千兆比特,能够在较大程度上满足今后一段时期内宽带移动通信应用需求。然而,随着智能终端普及应用及移动新业务需求持续增长,无线传输速率需求呈指数增长,无线通信的传输速率将仍然难以满足未来移动通信的应用需求。IMT-2020(5G) 推进组《5G愿景与需求白皮书》中提出,5G定位于频谱效率更高、速率更快、容量更大的无线网络,其中频谱效率相比4G需要提升5~15倍。在实现良好系统吞吐量的同时,为了保持接收的低成本,在4G中采用了正交多址接入技术。然而,面向5G频谱效率提升5~15倍的需求,业内提出采用新型多址接入复用方式,即非正交多址接入(NOMA)。

简单一句话,就是为了进一步提升频谱效率,所以就发明了NOMA技术。

什么是NOMA

  • 非正交多址技术(NOMA)的基本思想是在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除(SIC)接收机实现正确解调。虽然,采用SIC技术的接收机复杂度有一定的提高,但是可以很好地提高频谱效率
  • 用提高接收机的复杂度来换取频谱效率,这就是NOMA技术的本质。
  • 非正交多址接入(Non-Orthogonal Multiple Access, NOMA) 技术以不同功率将多个信息流在时域/频域/码域重叠的信道上传输,在相同无线资源上为多个用户同时提供无线业务。
  • 在正交多址技术(OMA)中,只能为一个用户分配单一的无线资源,例如按频率分割或按时间分割,而NOMA方式可将一个资源分配给多个用户。在某些场景中,比如远近效应场景和广覆盖多节点接入的场景,特别是上行密集场景,采用功率复用的非正交接入多址方式较传统的正交接入有明显的性能优势,更适合未来系统的部署。目前已经有研究验证了在城市地区采用NOMA的效果,并已证实,采用该方法可使无线接入宏蜂窝的总吞吐量提高50%左右。非正交多址复用通过结合串行干扰消除或类最大似然解调才能取得容量极限,因此技术实现的难点在于是否能设计出低复杂度且有效的接收机算法。
注意NOMA指的是非正交多址,而不是非正交频分,即NOMA的子信道传输依然采用正交频分复用(OFDM)技术,子信道之间是正交的,互不干扰,但是一个子信道上不再只分配给一个用户,而是多个用户共享,同一子信道上不同用户之间是非正交传输 (即非正交多址),这样就会产生用户间干扰问题,这也就是在接收端要采用SIC技术进行多用户检测的目的。在发送端,对同一子信道上的不同用户采用功率复用技术进行发送,不同的用户的信号功率按照相关的算法进行分配,这样到达接收端每个用户的信号功率都不一样。SIC接收机再根据不同户用信号功率大小按照一定的顺序进行干扰消除,实现正确解调,同时也达到了区分用户的目的。

NOMA采用的关键技术

1. 串行干扰删除(SIC)

在发送端,类似于CDMA系统,引入干扰信息可以获得更高的频谱效率,但是同样也会遇到多址干扰(MAI)的问题。关于消除多址干扰的问题,在研究第三代移动通信系统的过程中已经取得很多成果,串行干扰删除(SIC)也是其中之一。NOMA在接收端采用SIC接收机来实现多用户检测。

串行干扰消除技术的基本思想是采用逐级消除干扰策略,在接收信号中对用户逐个进行判决,进行幅度恢复后,将该用户信号产生的多址干扰从接收信号中减去,并对剩下的用户再次进行判决,如此循环操作,直至消除所有的多址干扰。

举个栗子:

例如,在一个由3个用户共享的子信道上,叠加后的信号为x=x(1)+x(2)+x(3)
其中,x(i)(i=1,2,3)分别代表3个用户信号,其中,信号功率x(1)<x(2)<x(3),为了简单起见。在接收端, 接收信号y(i)=h(i)x+w(i)
其中,h(i)是信道系数,w(i)是信道高斯白噪声和小区干扰。则SIC接收机解调3个用户过程为:

  • 在第一级检测之前,先要将接收信号按照信号功率大小进行排序,这里由于x(3)信号功率最强,先要对x(3)进行判决,输出x(3)。然后恢复出对x(3)的信号估计值,从接收信号中减去x(3)的估计值,得到x(1)+x(2),然后将h(2)(x(1)+x(2))+w(2)作为下一级输入。按照功率顺序依次执行相同的操作,最后先后输出x(2)和x(1),完成对所有的用户信号检测。
  • 在SIC信号检测过程中,很重要的一点是用户检测的顺序。这里进行排序是根据用户的信号功率来进行的。在NOMA中,发送端会采用功率复用技术对不同的用户进行功率分配。通常,信道增益高的用户会少分配一些功率资源,而信道增益低的用户会多分配一些功率资源。到达接收端后,每个用户的信号功率会不一样,SIC接收机根据用户的信号功率进行排序,依次对不同的进行解调,同时达到区分用户的目的。
  • 虽然,SIC技术有很好的信号检测性能,但要在NOMA中采用,有3个问题。首先,相对于传统的SIC接收机,NOMA中采用的SIC接收机要更复杂,要求具备更强的信号处理能力;其次,从上述过程可知,根据信号功率排的用户顺序决定了最佳的接收效果,而在实际过程中,用户的功率是不断变化的,这就要求SIC接收机不断地对用户功率进行排序;再次,从SIC结构图中可以看出,每一级处理都会产生一定的时延,在现实多级处理过程中,产生的时延很大。前一个问题的解决有赖于未来芯片处理能力的提升,而后两个问题则需要对相关的处理算法进行进一步的研究。

但是具体是如何把功率不同的用户分开呢?我也不知道!!!

难道是用功率分离器? 功率分离器请自行百度。。。
网上看到的相同的问题,但是没有人解答。。。
非正交多址技术NOMA基础知识

2. 功率复用

SIC在接收端消除多址干扰(MAI),需要在接收信号中对用户进行判决来排出消除干扰的用户的先后顺序,而判决的依据就是用户信号功率大小。基站在发送端会对不同的用户分配不同的信号功率,来获取系统最大的性能增益,同时达到区分用户的目的,这就是功率复用技术。功率复用技术在其他几种传统的多址方案没有被充分利用,其不同于简单的功率控制,而是由基站遵循相关的算法来进行功率分配。

当然,NOMA技术的实现依然面临一些难题。首先是非正交传输的接收机相当复杂,要设计出符合要求的SIC接收机还有赖于信号处理芯片技术的提高;其次,功率复用技术还不是很成熟,仍然有大量的工作要做。

那么与传统的CDMA(3G)和OFDM(4G)相比,NOMA的性能又有哪些优势呢?

  • 3G的多址技术采用的是直序扩频码分多址(CDMA)技术,采用非正交发送,所有用户共享一个信道,在接收端采用RAKE接收机。非正交传输有一个很严重的问题,就是远近效应,在3G中,人们采用功率控制技术在发送端对距离小区中心比较近的用户进行功率限制,保证在到达接收端每个用户的功率相当。
  • 4G的多址技术采用的是基于OFDM的正交频分多址(OFDMA)技术,不同用户之间采用正交传输所以远近效应不是那么明显,功率控制也不再是必需的了。在链路自适应技术上,4G采用了自适应编码(AMC)技术,可以根据链路状态信息自动调整调制编码方式,从而给用户提供最佳的传输速度,但是在一定程度上要依赖用户反馈的链路状态信息。
  • 跟CDMA和OFDMA相比,NOMA子信道之间采用正交传输,不会存在跟3G一样明显的远近效应问题,多址干扰(MAI)问题也没那么严重;由于可以不依赖用户反馈的CSI信息,在采用AMC和功率复用技术后,应对各种多变的链路状态更加自如,即使在高速移动的环境下,依然可以提供很好地速率表现;同一子信道上可以由多个用户共享,跟4G相比,在保证传输速度的同时,可以提高频谱效率,这也是最重要的一点。

本文地址:https://blog.csdn.net/qq_36554582/article/details/105122339