欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU6321  Problem C. Dynamic Graph Matching

程序员文章站 2022-06-09 19:01:35
...

Problem Description

In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices.
You are given an undirected graph with n vertices, labeled by 1,2,...,n . Initially the graph has no edges.
There are 2 kinds of operations :
+ u v, add an edge (u,v) into the graph, multiple edges between same pair of vertices are allowed.
- u v, remove an edge (u,v) , it is guaranteed that there are at least one such edge in the graph.
Your task is to compute the number of matchings with exactly k edges after each operation for k=1,2,3,...,n2 . Note that multiple edges between same pair of vertices are considered different.

 

 

Input

The first line of the input contains an integer T(1≤T≤10) , denoting the number of test cases.
In each test case, there are 2 integers n,m(2≤n≤10,nmod2=0,1≤m≤30000) , denoting the number of vertices and operations.
For the next m lines, each line describes an operation, and it is guaranteed that 1≤u<v≤n .

 

 

Output

For each operation, print a single line containing n2 integers, denoting the answer for k=1,2,3,...,n2 . Since the answer may be very large, please print the answer modulo 109+7 .

 

 

Sample Input

 

1 4 8 + 1 2 + 3 4 + 1 3 + 2 4 - 1 2 - 3 4 + 1 2 + 3 4

 

 

Sample Output

 

1 0 2 1 3 1 4 2 3 1 2 1 3 1 4 2

题意:给定n个点的无向图,m次加边或者删边操作。

      每次操作后统计包含123 ... n/2条边的匹配。

 

思路分析:

         考虑所有只有一条边的匹配。那么这种匹配肯定只涉及2个顶点。考虑二进制压缩。

那么对于最多10个点的情况。取10位二进制表示10个顶点,那么所有只有一条边的匹配就可以表示为1100000000   0101000000 等形式,而且不会遗漏。同样道理对于2条边的情况,就可以用只有四个110位二进制数表示了。因此,考虑dp[1025]表示各种情况下的匹配数。初始dp[0] = 1; 因为每次只加一条边。 那么每加一条边,我们就得更新各种情况下的匹配数目了。具体操作就是这样的: 每次加边涉及两个点,不妨设二进制下表示为s= 1100000000,那么他能更新那些匹配?考虑每种情况i s&i == 0 说   明他们没共工顶点吧。那么s|i的状态就能被更新了。因为在s|i中多出了选择新加边再选择i状态下所有匹配的方案数。

      因此,dp[s|i] += dp[i];

      同样道理,再删除边的时候,只要做相应的撤销就好了。

HDU6321  Problem C. Dynamic Graph Matching

最后每次询问只要加和对应的所有情况就好了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9+7;
const int maxn = 1025;
ll dp[maxn];
int bin[maxn];
char s[25];
ll ans[50];
int main()
{
    for(int i = 0; i < 1024; i++)
    {
        bin[i] = __builtin_popcount(i);
    }
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        memset(dp,0,sizeof(dp));
        dp[0] = 1;
        int up = (1<<n)-1;
        while(m--)
        {
            int x,y;
            scanf("%s%d%d",s,&x,&y);
            int tmp = (1<<(x-1))|(1<<(y-1));
            if(s[0] == '+')
            {
                for(int i = up; i >= 0; i--) 
                {
                    if((i&tmp) == 0) dp[i|tmp] = (dp[i|tmp]+dp[i])%mod;
                }
            }
            else 
            {
                for(int i = 0; i <= up; i++)
                {
                    if((i&tmp) == 0) dp[i|tmp] =(dp[i|tmp]-dp[i]+mod)%mod;;
                }
            }
            memset(ans,0,sizeof(ans));
            for(int i = 0; i <= up; i++)
            {
                ans[bin[i]] += dp[i];
                ans[bin[i]] %= mod;
            }
            for(int i = 2; i <= n; i+=2)
            {
                printf(i == n ? "%lld\n" : "%lld ",ans[i]);
            }
        } 
    }
    return 0;
}