欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

吴恩达编程作业——初始化、正则化、梯度校验

程序员文章站 2022-06-09 16:34:34
初始化、正则化、梯度校验首先声明本文参考https://blog.csdn.net/u013733326/article/details/79847918,通过学习自己动手实现了前文中的所有功能,自己动手实现了Xavier初始化参数,并归纳了一个思维导图,更加清晰地了解各个模块的功能及使用,对理解 多层的神经网络有很大的帮助。初始化参数import numpy as npimport matplotlib.pyplot as pltimport sklearnimport sklearn.dat...

初始化、正则化、梯度校验

首先声明本文参考https://blog.csdn.net/u013733326/article/details/79847918,通过学习自己动手实现了前文中的所有功能,自己动手实现了Xavier初始化参数,并归纳了一个思维导图,更加清晰地了解各个模块的功能及使用,对理解 多层的神经网络有很大的帮助。
吴恩达编程作业——初始化、正则化、梯度校验

初始化参数

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import scipy.io as sio
import init_utils   #第一部分,初始化
import reg_utils    #第二部分,正则化
import gc_utils     #第三部分,梯度校验
#%matplotlib inline #如果你使用的是Jupyter Notebook,请取消注释。
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
train_X, train_Y, test_X, test_Y = init_utils.load_dataset(is_plot=True)

吴恩达编程作业——初始化、正则化、梯度校验

定义模型对上述数据进行分类

  • 初始化为0:initialization = “zeros”
  • 初始化为随机数:initialization = “random”
  • 抑梯度异常初始化:initialization = “he”
def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True,initialization="he",is_polt=True):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    
    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0 | 1】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代1000次打印一次
        initialization - 字符串类型,初始化的类型【"zeros" | "random" | "he"】
        is_polt - 是否绘制梯度下降的曲线图
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0],10,5,1]
    
    # 选择初始化的类型
    if initialization == "zeros":
        parameters = initialize_parameters_zeros(layers_dims)
    elif initialization == "random":
        parameters = initialize_parameters_random(layers_dims)
    elif initialization == "he":
        parameters = initialize_parameters_he(layers_dims)
    elif initialization == "Xavier":
        parameters = initialize_parameters_Xavier(layers_dims)      
    else:
        print("错误的初始化参数")
        exit
    
    # 开始学习模型的参数
    for i in range(0,num_iterations):
        #前向传播
        a3 , cache = init_utils.forward_propagation(X,parameters)
        
        #计算成本        
        cost = init_utils.compute_loss(a3,Y)
        
        #反向传播
        grads = init_utils.backward_propagation(X,Y,cache)
        
        #更新参数
        parameters = init_utils.update_parameters(parameters,grads,learning_rate)
        
        #记录成本
        if i % 1000 == 0:
            costs.append(cost)
            #打印成本
            if print_cost:
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))
        
    
    #学习完毕,绘制成本曲线
    if is_polt:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (per hundreds)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    
    #返回学习完毕后的参数
    return parameters

参数初始化为0

def initialize_parameters_zeros(layers_dims):
    """
    将模型的参数全部设置为0
    
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            bL - 偏置向量,维度为(layers_dims[L],1)
    """
    parameters = {}
    L = len(layers_dims)
    
    for l in range(1,L):
        parameters["W" + str(l)] = np.zeros((layers_dims[l],layers_dims[l-1]))
        parameters["b" + str(l)] = np.zeros((layers_dims[l],1))
        
        #使用断言确保我的数据格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l],1))
        
    return parameters
parameters = model(train_X, train_Y, initialization = "zeros",is_polt=True)
第0次迭代,成本值为:0.6931471805599453
第1000次迭代,成本值为:0.6931471805599453
第2000次迭代,成本值为:0.6931471805599453
第3000次迭代,成本值为:0.6931471805599453
第4000次迭代,成本值为:0.6931471805599453
第5000次迭代,成本值为:0.6931471805599453
第6000次迭代,成本值为:0.6931471805599453
第7000次迭代,成本值为:0.6931471805599453
第8000次迭代,成本值为:0.6931471805599453
第9000次迭代,成本值为:0.6931471805599453
第10000次迭代,成本值为:0.6931471805599455
第11000次迭代,成本值为:0.6931471805599453
第12000次迭代,成本值为:0.6931471805599453
第13000次迭代,成本值为:0.6931471805599453
第14000次迭代,成本值为:0.6931471805599453

吴恩达编程作业——初始化、正则化、梯度校验

上图表明将参数初始化为0,模型并没有学习,因为最后的输出结果为0,梯度也对应为0,无法更新权重

print ("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print ("测试集:")
predictions_test = init_utils.predict(test_X, test_Y, parameters)
训练集:
Accuracy: 0.5
测试集:
Accuracy: 0.5
plt.title("Model with Zeros initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
Y = np.squeeze(train_Y)
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, Y)

吴恩达编程作业——初始化、正则化、梯度校验

参数随机初始化

def initialize_parameters_random(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
    """
    
    np.random.seed(3)               # 指定随机种子
    parameters = {}
    L = len(layers_dims)            # 层数
    
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 #使用10倍缩放
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))
        
        #使用断言确保我的数据格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l],1))
        
    return parameters


parameters = model(train_X, train_Y, initialization = "random",is_polt=True)
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
predictions_test = init_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:inf
第1000次迭代,成本值为:0.6250982793959966
第2000次迭代,成本值为:0.5981216596703697
第3000次迭代,成本值为:0.5638417572298645
第4000次迭代,成本值为:0.5501703049199763
第5000次迭代,成本值为:0.5444632909664456
第6000次迭代,成本值为:0.5374513807000807
第7000次迭代,成本值为:0.4764042074074983
第8000次迭代,成本值为:0.39781492295092263
第9000次迭代,成本值为:0.3934764028765484
第10000次迭代,成本值为:0.3920295461882659
第11000次迭代,成本值为:0.38924598135108
第12000次迭代,成本值为:0.3861547485712325
第13000次迭代,成本值为:0.384984728909703
第14000次迭代,成本值为:0.3827828308349524

吴恩达编程作业——初始化、正则化、梯度校验

训练集:
Accuracy: 0.83
测试集:
Accuracy: 0.86
plt.title("Model with large random initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
Y = np.squeeze(train_Y)
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, Y)

吴恩达编程作业——初始化、正则化、梯度校验

随机初始化最后一个激活值不会像初始化为0一样都为0,能够通过反向传播更新参数学习。但是如果使用sigmoid激活函数,激活值太大或者太小会造成梯度消失,将会减慢学习的速度

抑梯度异常初始化

def initialize_parameters_he(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
    """
    
    np.random.seed(3)               # 指定随机种子
    parameters = {}
    L = len(layers_dims)            # 层数
    
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1])
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))
        
        #使用断言确保我的数据格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l],1))
        
    return parameters
parameters = model(train_X, train_Y, initialization = "he",is_polt=True)
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
init_utils.predictions_test = init_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.8830537463419761
第1000次迭代,成本值为:0.6879825919728063
第2000次迭代,成本值为:0.6751286264523371
第3000次迭代,成本值为:0.6526117768893807
第4000次迭代,成本值为:0.6082958970572937
第5000次迭代,成本值为:0.5304944491717495
第6000次迭代,成本值为:0.4138645817071793
第7000次迭代,成本值为:0.3117803464844441
第8000次迭代,成本值为:0.23696215330322556
第9000次迭代,成本值为:0.18597287209206828
第10000次迭代,成本值为:0.15015556280371808
第11000次迭代,成本值为:0.12325079292273548
第12000次迭代,成本值为:0.09917746546525937
第13000次迭代,成本值为:0.08457055954024274
第14000次迭代,成本值为:0.07357895962677366

吴恩达编程作业——初始化、正则化、梯度校验

训练集:
Accuracy: 0.9933333333333333
测试集:
Accuracy: 0.96
plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
Y = np.squeeze(train_Y)
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, Y)

吴恩达编程作业——初始化、正则化、梯度校验

Xavier初始化

def initialize_parameters_Xavier(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
    """
    
    np.random.seed(3)               # 指定随机种子
    parameters = {}
    L = len(layers_dims)            # 层数
    
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / (layers_dims[l] + layers_dims[l - 1]) )
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))
        
        #使用断言确保我的数据格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l],layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l],1))
        
    return parameters
parameters = model(train_X, train_Y, initialization = "Xavier",is_polt=True)
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
init_utils.predictions_test = init_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.7221708090786466
第1000次迭代,成本值为:0.6980529343944162
第2000次迭代,成本值为:0.691553512668888
第3000次迭代,成本值为:0.6889550202891771
第4000次迭代,成本值为:0.6858649238739213
第5000次迭代,成本值为:0.6808691664528034
第6000次迭代,成本值为:0.6716741837019392
第7000次迭代,成本值为:0.6549333494282477
第8000次迭代,成本值为:0.6229241503212861
第9000次迭代,成本值为:0.5662898268194068
第10000次迭代,成本值为:0.48051779541292267
第11000次迭代,成本值为:0.3809485130283596
第12000次迭代,成本值为:0.291960990126856
第13000次迭代,成本值为:0.22337778520038892
第14000次迭代,成本值为:0.1748085167116298

吴恩达编程作业——初始化、正则化、梯度校验

训练集:
Accuracy: 0.99
测试集:
Accuracy: 0.95
plt.title("Model with Xavier initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
Y = np.squeeze(train_Y)
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, Y)

吴恩达编程作业——初始化、正则化、梯度校验

该方法有一定限制,其推导过程加入激活函数在零点附近接近线性函数,而relu则不满足假设

正则化模型

def load_dataset(is_plot=True):
    data = sio.loadmat('datasets/data.mat')
    train_X = data['X'].T
    train_Y = data['y'].T
    test_X = data['Xval'].T
    test_Y = data['yval'].T

    if is_plot:
        plt.scatter(train_X[0, :], train_X[1, :], c=np.squeeze(train_Y) , s=40, cmap=plt.cm.Spectral);
    
    return train_X, train_Y, test_X, test_Y

train_X, train_Y, test_X, test_Y = load_dataset(is_plot=True)

吴恩达编程作业——初始化、正则化、梯度校验

定义模型对上述数据进行分类

  • 不进行正则化
  • 使用L2正则化
  • dropout
def model(X,Y,learning_rate=0.3,num_iterations=30000,print_cost=True,is_plot=True,lambd=0,keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    
    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数
        keep_prob - 随机删除节点的概率
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0],20,3,1]
    
    #初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)
    
    #开始学习
    for i in range(0,num_iterations):
        #前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3 , cache = reg_utils.forward_propagation(X,parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3 , cache = forward_propagation_with_dropout(X,parameters,keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit
        
        #计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3,Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3,Y,parameters,lambd)
        
        #反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert(lambd == 0  or keep_prob ==1)
        
        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X,Y,cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)
        
        #更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)
        
        #记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                #打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))
        
    #是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    
    #返回学习后的参数
    return parameters

不适用正则化

parameters = model(train_X, train_Y,is_plot=True)
print("训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.6557412523481002
第10000次迭代,成本值为:0.16329987525724196
第20000次迭代,成本值为:0.13851642423253843

吴恩达编程作业——初始化、正则化、梯度校验

训练集:
Accuracy: 0.9478672985781991
测试集:
Accuracy: 0.915
plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
Y = np.squeeze(train_Y)
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, Y)

吴恩达编程作业——初始化、正则化、梯度校验

L2 正则化

def compute_cost_with_regularization(A3,Y,parameters,lambd):
    """
    实现公式2的L2正则化计算成本
    
    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值
    
    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]
    
    cross_entropy_cost = reg_utils.compute_cost(A3,Y)
    
    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2))  + np.sum(np.square(W3))) / (2 * m)
    
    cost = cross_entropy_cost + L2_regularization_cost
    
    return cost
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。
    
    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数
    
    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """
    
    m = X.shape[1]
    
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 -Y
    
    dW3 = (1 / m) * np.dot(dZ3,A2.T) + ((lambd * W3) / m )
    db3 = (1 / m) * np.sum(dZ3,axis=1,keepdims=True)
    
    dA2 = np.dot(W3.T,dZ3)
    dZ2 = np.multiply(dA2,np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2,A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2,axis=1,keepdims=True)
    
    dA1 = np.dot(W2.T,dZ2)
    dZ1 = np.multiply(dA1,np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1,X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1,axis=1,keepdims=True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients
parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)
print("使用正则化,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用正则化,测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.6974484493131264
第10000次迭代,成本值为:0.2684918873282239
第20000次迭代,成本值为:0.2680916337127301

吴恩达编程作业——初始化、正则化、梯度校验

使用正则化,训练集:
Accuracy: 0.9383886255924171
使用正则化,测试集:
Accuracy: 0.93
plt.title("Model with L2-regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
Y = np.squeeze(train_Y)
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, Y)

吴恩达编程作业——初始化、正则化、梯度校验

L2正则化对以下内容有影响:

  • 成本计算       : 正则化的计算需要添加到成本函数中
  • 反向传播功能     :在权重矩阵方面,梯度计算时也要依据正则化来做出相应的计算
  • 重量变小(“重量衰减”) :权重被逐渐改变到较小的值。

W[l]:=W[l]α[(frombackprop)+λmW[l]]W^{[l]} := W^{[l]} - α[(from backprop) + \frac{λ}{m}W^{[l]}]
=(1αλm)W[l]α(frombackprop)= (1- \frac{αλ}{m})W^{[l]} - α(from backprop)
其中1αλm<01- \frac{αλ}{m} < 0 所以可以让W减小更快,例如sigmoid的类似线性部分可以有效地减少过拟合,且分类界面更加平滑。

dropout

吴恩达编程作业——初始化、正则化、梯度校验

吴恩达编程作业——初始化、正则化、梯度校验

步骤:

  • 定义一个和A[l]A^{[l]}相同大小的随机矩阵D[l]D^{[l]}
  • D[l]D^{[l]}中大于keep_pro的设置为1,反之设置为0
  • A[l]=A[l]D[l]A^{[l]} = A^{[l]} * D^{[l]}
  • A[l]=A[l]/keep_proA^{[l]} = A^{[l]} / keep\_pro 进行缩放
def forward_propagation_with_dropout(X,parameters,keep_prob=0.5):
    """
    实现具有随机舍弃节点的前向传播。
    LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.
    
    参数:
        X  - 输入数据集,维度为(2,示例数)
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(20,2)
            b1  - 偏向量,维度为(20,1)
            W2  - 权重矩阵,维度为(3,20)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
        keep_prob  - 随机删除的概率,实数
    返回:
        A3  - 最后的激活值,维度为(1,1),正向传播的输出
        cache - 存储了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)
    
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    #LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1,X) + b1
    A1 = reg_utils.relu(Z1)
    
    #下面的步骤1-4对应于上述的步骤1-4。
    D1 = np.random.rand(A1.shape[0],A1.shape[1])    #步骤1:初始化矩阵D1 = np.random.rand(..., ...)
    D1 = D1 < keep_prob                             #步骤2:将D1的值转换为0或1(使​​用keep_prob作为阈值)
    A1 = A1 * D1                                    #步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A1 = A1 / keep_prob                             #步骤4:缩放未舍弃的节点(不为0)的值

    Z2 = np.dot(W2,A1) + b2
    A2 = reg_utils.relu(Z2)
    
    #下面的步骤1-4对应于上述的步骤1-4。
    D2 = np.random.rand(A2.shape[0],A2.shape[1])    #步骤1:初始化矩阵D2 = np.random.rand(..., ...)
    D2 = D2 < keep_prob                             #步骤2:将D2的值转换为0或1(使​​用keep_prob作为阈值)
    A2 = A2 * D2                                    #步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A2 = A2 / keep_prob                             #步骤4:缩放未舍弃的节点(不为0)的值
    
    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)
    
    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
    
    return A3, cache
def backward_propagation_with_dropout(X,Y,cache,keep_prob):
    """
    实现我们随机删除的模型的后向传播。
    参数:
        X  - 输入数据集,维度为(2,示例数)
        Y  - 标签,维度为(输出节点数量,示例数量)
        cache - 来自forward_propagation_with_dropout()的cache输出
        keep_prob  - 随机删除的概率,实数
    
    返回:
        gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = (1 / m) * np.dot(dZ3,A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    dA2 = np.dot(W3.T, dZ3)
    
    dA2 = dA2 * D2          # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA2 = dA2 / keep_prob   # 步骤2:缩放未舍弃的节点(不为0)的值
    
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)
    
    dA1 = np.dot(W2.T, dZ2)
    
    dA1 = dA1 * D1          # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA1 = dA1 / keep_prob   # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)

print("使用Dropout,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用Dropout,测试集:")
reg_utils.predictions_test = reg_utils.predict(test_X, test_Y, parameters)
第0次迭代,成本值为:0.6543912405149825
第10000次迭代,成本值为:0.061016986574905605
第20000次迭代,成本值为:0.060582435798513114

吴恩达编程作业——初始化、正则化、梯度校验

使用Dropout,训练集:
Accuracy: 0.9289099526066351
使用Dropout,测试集:
Accuracy: 0.95
plt.title("Model with dropout")
axes = plt.gca()
axes.set_xlim([-0.75, 0.40])
axes.set_ylim([-0.75, 0.65])
Y = np.squeeze(train_Y)
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, Y)

吴恩达编程作业——初始化、正则化、梯度校验

梯度校验

对于每个参数的梯度校验的步骤为:

for i in num_parameters:

  • 计算J[i]+J^{[i]+}
    • θ+θ^+ : np.copy(parameters_values)
    • θ+=θ+εθ^+ = θ^+ ε
    • 使用 forward_propagation_n(x, y, vector_to_dictionary(θ+\theta^{+} ))来计算J[i]+J^{[i]+}
  • 同样方法计算J[i]J^{[i]-}
  • 计算 gradapprox[i]=J[i]+J[i]2ε gradapprox[i] = \frac{J^{[i]+} - J^{[i]-}}{2ε}
  • 计算梯度gradgrad
  • 计算误差difference=gradgradapprox2grad2+gradapprox2difference = \frac{||grad - gradapprox||_2}{||grad||_2 + ||gradapprox||_2}

如果different<=107different <= 10^{-7}那么就以为这导数毕竟很有可能是正确的

如果different>=105different >= 10^{-5}也许这个值没问题,但有可能存在bug

本文地址:https://blog.csdn.net/weixin_38293304/article/details/107639648