欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Windows实现高精度定时器的三种方法

程序员文章站 2022-06-09 16:33:47
...

      前段时间一个项目需要用到1/24s的高精度定时器,每秒的误差不能超过10ms,大约41.666666666毫秒的延时,普通Sleep肯定是没办法满足的了,可以用以下新的三种方法:

/*
	// 1秒=1000毫秒(ms)
	// 1毫秒=1/1000秒(s)
	// 1秒=1000000 微秒(μs)
	// 1微秒=1/1000000秒(s)
	// 1秒=1000000000 纳秒(ns)
	// 1纳秒=1/1000000000秒(s)
	// lTime----休眠时间(微秒)
*/

1、利用CreateWaitableTimer实现纳秒级延时

/*
纳秒休眠,符号ns(英语:nanosecond ).
1纳秒等于十亿分之一秒(10-9秒)
1 纳秒 = 1000皮秒 
1,000 纳秒 = 1微秒 	  
1,000,000 纳秒 = 1毫秒 		
1,000,000,000 纳秒 = 1秒 
*/
int NSSleep()
{
	HANDLE hTimer = NULL;
    LARGE_INTEGER liDueTime;
	
    liDueTime.QuadPart = -390000;
	
    // Create a waitable timer.
    hTimer = CreateWaitableTimer(NULL, TRUE, "WaitableTimer");
    if (!hTimer)
    {
        printf("CreateWaitableTimer failed (%d)\n", GetLastError());
        return 1;
    }

    // Set a timer to wait for 10 seconds.
    if (!SetWaitableTimer(
        hTimer, &liDueTime, 0, NULL, NULL, 0))
    {
        printf("SetWaitableTimer failed (%d)\n", GetLastError());
        return 2;
    }
	
    // Wait for the timer.
    if (WaitForSingleObject(hTimer, INFINITE) != WAIT_OBJECT_0)
        printf("WaitForSingleObject failed (%d)\n", GetLastError());

    return 0;
}

2、利用QueryPerformanceFrequency与QueryPerformanceCounter实现毫秒级延时

// 休眠指定毫秒数
void MSleep(long lTime)
{
	LARGE_INTEGER litmp; 
	LONGLONG QPart1,QPart2;
	double dfMinus, dfFreq, dfTim, dfSpec; 
	QueryPerformanceFrequency(&litmp);
	dfFreq = (double)litmp.QuadPart;
	QueryPerformanceCounter(&litmp);
	QPart1 = litmp.QuadPart;
	dfSpec = 0.000001*lTime;
		
	do
	{
		QueryPerformanceCounter(&litmp);
		QPart2 = litmp.QuadPart;
		dfMinus = (double)(QPart2-QPart1);
		dfTim = dfMinus / dfFreq;
	}while(dfTim<dfSpec);
}

3、利用timeSetEvent实现1ms定时器

#include <mmsystem.h>
#pragma comment(lib,"winmm.lib")


//定义1ms和2s时钟间隔,以ms为单位
#define ONE_MILLI_SECOND	1

//定义时钟分辨率,以ms为单位
#define TIMER_ACCURACY		1

volatile DWORD	g_nCounter = 0;
volatile DWORD	g_nCnt = 0;
DWORD			g_nTicket = 0;
LARGE_INTEGER	g_xliPerfFreq = {0};
LARGE_INTEGER	g_xliPerfStart={0};  
LARGE_INTEGER	g_xliPerfNow={0};
int				g_nSecond = 0;

MMRESULT		g_mmTimerId = 0;
UINT			g_wAccuracy = 0;

// 自己去实现一个PING函数, 网上大把就不发了
int StartPing()
{
	return 1;
}

void CALLBACK TimerProc(UINT nID, UINT uMsg, DWORD dwUser, DWORD dw1, DWORD d2)
{
	double		dtime = 0.0f;
	char		szBuffer[MAX_PATH] = {0x00}; 
	DWORD		nTemp = 0;

	if(nID == g_mmTimerId)
	{
		g_nCounter++;
		g_nSecond += StartPing();
		if(g_nCounter == 24)
		{
		
			QueryPerformanceCounter(&g_xliPerfNow);  
			dtime = ((double)(g_xliPerfNow.QuadPart - g_xliPerfStart.QuadPart) * 1000000.0f) / (double)g_xliPerfFreq.QuadPart; 
			
			if(dtime < 1000000.0f)
			{
				MSleep((1000000.0f - dtime));
			}

			QueryPerformanceCounter(&g_xliPerfNow);  
			dtime = ((double)(g_xliPerfNow.QuadPart - g_xliPerfStart.QuadPart) * 1000000.0f) / (double)g_xliPerfFreq.QuadPart; 
			
			nTemp = GetTickCount() - g_nTicket;			
			sprintf(szBuffer," [%04d] 执行时间 %d 毫秒,  \t%.9f 微秒,  \t延时: %d ms", g_nCnt, nTemp, dtime, g_nSecond);  
			cout<<szBuffer<<endl;
			
			g_nTicket = GetTickCount();
			memset(&g_xliPerfNow, 0x00, sizeof(LARGE_INTEGER));
			memset(&g_xliPerfStart, 0x00, sizeof(LARGE_INTEGER));
			memset(&g_xliPerfNow, 0x00, sizeof(LARGE_INTEGER));

			QueryPerformanceFrequency(&g_xliPerfFreq);   
			QueryPerformanceCounter(&g_xliPerfStart); 

			g_nCnt++;
			g_nCounter = 0;
			g_nSecond = 0;
		}
	}
}

// 释放定时器
void FreeHighTimer()
{
	if(g_mmTimerId == 0)
		return;
	
	timeKillEvent(g_mmTimerId);
	timeEndPeriod(g_wAccuracy); 
}

// 初始化高精度定时器
BOOL InitHighTimer()
{
	TIMECAPS	tc;

	QueryPerformanceFrequency(&g_xliPerfFreq);   
	QueryPerformanceCounter(&g_xliPerfStart); 
	g_nTicket = GetTickCount();
	
	//利用函数timeGetDeVCaps取出系统分辨率的取值范围,如果无错则继续; 
	if(timeGetDevCaps(&tc,sizeof(TIMECAPS)) == TIMERR_NOERROR) 
	{
		//分辨率的值不能超出系统的取值范围
		g_wAccuracy = min(max(tc.wPeriodMin, TIMER_ACCURACY), tc.wPeriodMax); 
		
		//调用timeBeginPeriod函数设置定时器的分辨率 
		timeBeginPeriod(g_wAccuracy);
		
		// 设定41毫秒定时器
		g_mmTimerId = timeSetEvent(41,0,TimerProc,NULL,TIME_PERIODIC);
		if(g_mmTimerId == 0)
		{
			cout << "timeSetEvent failed: %d" << GetLastError() << endl;
			return FALSE;
		}
		
		return TRUE;
	}
	
	return FALSE;
}

每一秒耗时都是相对准确的,运行效果如下:

Windows实现高精度定时器的三种方法
前面为GetTicket取出的毫秒,后面为每执行24次一个周期所消耗的微妙,最后一个为ping

 

      本来是创建一个线程,再用方法1、2来休眠实现延时,但这种太低效率了而且不能保证误差,所以综上对比,强烈推荐第三种方法做高精度定时器!