欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python numpy数组的索引和切片的操作方法

程序员文章站 2022-06-09 12:38:51
numpy - 简介 numpy 是一个 python 包。 它代表 “numeric python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。 nu...

numpy - 简介

numpy 是一个 python 包。 它代表 “numeric python”。 它是一个由多维数组对象和用于处理数组的例程集合组成的库。

numeric,即 numpy 的前身,是由 jim hugunin 开发的。 也开发了另一个包 numarray ,它拥有一些额外的功能。 2005年,travis oliphant 通过将 numarray 的功能集成到 numeric 包中来创建 numpy 包。 这个开源项目有很多贡献者。

numpy 操作

使用numpy,开发人员可以执行以下操作:

•数组的算数和逻辑运算。

•傅立叶变换和用于图形操作的例程。

•与线性代数有关的操作。 numpy 拥有线性代数和随机数生成的内置函数。

numpy库多维数组的类型和列表的类型非常类似,同样有索引和切片功能:

索引:获取数组中特定位置元素的过程

切片:获取数组元素子集的过程

1.一维数组

# 准备一个数组
arr1=np.array(np.arange(9))
arr1

array([0, 1, 2, 3, 4, 5, 6, 7, 8])

# 索引
arr[-1] #8
arr1[arr1.size-2] #7
arr1[arr1.size-9] #0 
# 切片 :[start:end:step]
arr1[1:4] #左开右闭的区间
arr1[1:5:2] #array([1,3])
arr1[::-1] # 反向取所有,-1变成了步长

2.二维数组

# 准备一个二维数组
arr2=np.array([
 np.arange(1,4),
 np.arange(5,8)
])

arr2

array([[1, 2, 3],
 [5, 6, 7]])

# 索引
arr2[0][2] # 3
arr2[0,2] # 3
# 切片
arr2[0,] # array([1,2,3]) 
arr2[0,::] # 同上
arr2[0,0:3] #array([1,2]) 

3.多维数组

arr4=np.arange(1,25).reshape(2,3,4)
arr4

array([[[ 1, 2, 3, 4],
 [ 5, 6, 7, 8],
 [ 9, 10, 11, 12]],
 [[13, 14, 15, 16],
 [17, 18, 19, 20],
 [21, 22, 23, 24]]])

arr4[1][2][2] # 23
arr4[1,1,1] #18
arr3[1,1,] # array([17,18,19,20])
arr4[1,1,::] # 同上
arr4[1,1,::-1] # array([20, 19, 18, 17])
arr4[0,1:3] 
#array([[ 5, 6, 7, 8],
  #[ 9, 10, 11, 12]])
arr4[:1,1] #array([ 6, 18])
b[1,:,2] #array([15, 19, 23])
b[1,...] 
#array([[13, 14, 15, 16],
 # [17, 18, 19, 20],
 # [21, 22, 23, 24]])
b[0,::-1,-1] #array([12, 8, 4])
b[:,:,-1][::-1][:,-1] #array([24, 12])

总结

以上所述是小编给大家介绍的python numpy数组的索引和切片的操作方法,希望对大家有所帮助