STM32输出 PWM频率 占空比 连续可调~~
程序员文章站
2022-06-08 20:47:56
...
来一波不同凡响的PWM
话不多说 直接上代码 我的平台是 stm32F407VGT6 PA0 输出 使用定时器TIM2
//编程输出可调的硬件PWM,频率范围1Hz - 1MHz,占空比0 - 100 %
uint32_t TIM2_PWM_FQ = 50; /* TIM2_CH1_PWM输出 频率设置值,1-1000000 */
uint32_t TIM2_PWM_FQ_Old = 0;
uint16_t TIM2_PWM_Pulse = 50; /* TIM2_CH1_PWM输出 占空比设置值,0-100 */
uint16_t TIM2_PWM_Pulse_Old = 0;
uint32_t SystemCoreClock = 168000000;
/*
* 函数功能: 定时器4配置为硬件PWM模式(不开启TIM2的定时及DMA传输中断)
* TIM2_PWM_FQ: TIM2_CH1_PWM 频率 1Hz至1000000Hz
* TIM2_PWM_Pulse: TIM2_CH1_PWM 占空比 0-100%
*/
void StdPeriph_TIM2_PWM_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
uint32_t temp32;
uint32_t uhTimerfrequency;
uint16_t uhTimerPeriod;
uint16_t uhTimerPulse;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// GPIOB Configuration
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource0, GPIO_AF_TIM2);
uhTimerfrequency = 200000; /* 初始化 200KHz */
temp32 = ((SystemCoreClock / 2) / uhTimerfrequency);
if (temp32 > 65535) temp32 = 65535;
uhTimerPeriod = (uint16_t) temp32;
uhTimerPulse = uhTimerPeriod * 50 / 100; /* 占空比50% */
// Time base configuration
TIM_TimeBaseStructure.TIM_Period = uhTimerPeriod - 1; /* 0x0000 and 0xFFFF */
TIM_TimeBaseStructure.TIM_Prescaler = 0; /* 0x0000 and 0xFFFF */
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// PWM1 Mode configuration: Channel1
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = uhTimerPulse;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM2, ENABLE);
TIM_GenerateEvent(TIM2, TIM_EventSource_Update);
TIM_Cmd(TIM2, ENABLE);
}
/*
* 函数功能: 刷新TIM2_CH1_PWM输出的频率和占空比
* 修改TIM2_PWM_FQ的值,调节PWM频率(1Hz至1MHz)
* 修改TIM2_PWM_Pulse的值,调节PWM的占空比(0-100)
*/
void StdPeriph_TIM2_PWM_Update(void)
{
uint32_t temp32;
uint32_t uhTimerfrequency;
uint16_t uhTimerPeriod;
uint16_t uhTimerPrescaler;
uint16_t uhTimerPulse;
if ((TIM2_PWM_FQ_Old != TIM2_PWM_FQ) || (TIM2_PWM_Pulse_Old != TIM2_PWM_Pulse)) {
TIM2_PWM_FQ_Old = TIM2_PWM_FQ;
TIM2_PWM_Pulse_Old = TIM2_PWM_Pulse;
if (TIM2_PWM_FQ >= 4000) {
uhTimerfrequency = TIM2_PWM_FQ; /* 定时器计时频率和PWM频率相等 */
uhTimerPrescaler = 1; /* 实际频率TIM2_PWM_FQ较大时,TIM2设置分频为1(不分频) */
} else {
uhTimerfrequency = 4000; /* 实际频率TIM2_PWM_FQ较小时,和4000Hz的频率比较,看相差几倍 */
uhTimerPrescaler = 4000 / TIM2_PWM_FQ; /* 实际频率和4000相差的倍数作为TIM2的分频设置值 */
uhTimerfrequency = uhTimerPrescaler * TIM2_PWM_FQ; /* TIM2分频后,计时周期变长,需要将uhTimerfrequency倍频 */
}
/* TIM2的周期要通过倍频uhTimerfrequency来计算,uhTimerPeriod = 84MHz / uhTimerfrequency */
temp32 = ((SystemCoreClock / 2) / uhTimerfrequency);
if (temp32 > 65535) temp32 = 65535;
uhTimerPeriod = (uint16_t) temp32;
if (TIM2_PWM_Pulse > 100) TIM2_PWM_Pulse = 100;
uhTimerPulse = uhTimerPeriod * TIM2_PWM_Pulse / 100;
TIM2->ARR = uhTimerPeriod - 1;
TIM2->PSC = uhTimerPrescaler - 1;
TIM2->CCR1 = uhTimerPulse;
TIM2->EGR = TIM_PSCReloadMode_Update;
}
}