欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU-1695-GCD

程序员文章站 2022-06-07 21:52:23
...

ACM模版

描述

HDU-1695-GCD

题解

莫比乌斯反演入门题,给大家推荐一个写的十分详细的博客,由浅入深,大赞!__proto__’s blog,让我更加清晰的认识了莫比乌斯反演的用处,感谢大佬!

代码

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;

const int MAXN = 1e5 + 7;

int a, b, c, d, k, cnt;
int pri[MAXN];
int miu[MAXN];
bool vis[MAXN];

void init()
{
    memset(pri, 0, sizeof(pri));
    memset(miu, 0, sizeof(miu));
    memset(vis, 0, sizeof(vis));
    miu[1] = 1;
    cnt = 0;
    for (int i = 2; i < MAXN; i++)
    {
        if (!vis[i])
        {
            pri[cnt++] = i;
            miu[i] = -1;
        }
        for (int j = 0; j < cnt && i * pri[j] < MAXN; j++)
        {
            vis[i * pri[j]] = 1;
            if (i % pri[j])
            {
                miu[i * pri[j]] = -miu[i];
            }
            else
            {
                miu[i * pri[j]] = 0;
                break;
            }
        }
    }
}

int main()
{
    init();

    int T;
    cin >> T;
    for (int i = 1; i <= T; i++)
    {
        printf("Case %d: ", i);
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);

        if (k == 0)
        {
            puts("0");
            continue;
        }

        b /= k;
        d /= k;
        int t = min(b, d);
        long long ans1 = 0, ans2 = 0;
        for (int i = 1; i <= t; i++)
        {
            ans1 += (long long)miu[i] * (b / i) * (d / i);
        }
        for (int i = 1; i <= t; i++)
        {
            ans2 += (long long)miu[i] * (t / i) * (t / i);
        }

        printf("%lld\n", ans1 - (ans2 >> 1));
    }

    return 0;
}
相关标签: 莫比乌斯反演

推荐阅读