欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

算法入门篇四 桶排序

程序员文章站 2022-06-07 14:42:55
...

桶排序

计数排序(基于统计)

  • 要求数据是有限的,和数据状况有关,比如对于200个人统计他们的年龄分布,这个时候需要申请200个桶,因此对于输入数据的规模有限制,如果输入规模是不定的,空间申请就会很麻烦。

基数排序

思想

  • 要求排序的数字都是十进制的数字,找到最高位的数字,对于其中不满足位数的数字前面补0,例如【100,23,34】就需要改写成【100,023,034】的形式。
  • 准备和数字相同数目的桶(类比于先进先出的队列),所有数字按照个位数字进桶,然后按照从左往右的次序依次往出倒数字,如果一个桶内有多个数字按照次序(队列)倒数,再按照十位数字进桶,原理和先前类似,倒出;再按照百位数字进桶,出桶。最后的次序是从小到大的。

落地

算法入门篇四 桶排序

  • 初始数组为【23,13,3,24,23,14】,申请两个栈,一个为count,一个是help。count按照次序分别是【0,1,2,3,4,5,6,7,8,9】这个用于统计对应的数字的个数,比如上面这个例子的话,个位是3的个数有4个,个位是4的个数有3个。而help指定的是数组中元素的个数。此时一个6个元素,所以将help的大小设置为6。
  •  统计完对应的数字数字之后,得到的count为【0,0,0,4,2,0,0,0,0,0】,对其进行加工,对应元素的位置等于自身的值+前面的元素值。如果是0号位置就是本身,1号就是0+0,2号是0+0;3号是4+0;4号是4+0;5号是6+0;依次类推剩余元素的值都是6。经过加工后的count数组含义就是小于等于相应位置上元素的个数。比如小于等于3的有三个元素;小于等于5,6,7,8,9的有6个元素。

算法入门篇四 桶排序

操作过程 

  • 从右往左遍历,第一个元素是14,个位数小于等于6的有6个,所以将14填写在help的5位置上,并且将count数组中的4对应的6减1,变成5。
  • 下一个元素是23,个位元素对应的是3,查询count数组,小于等于3的元素有四个,因此将23填写在help数组的3号位置,count中3号位置的4减1;
  • 下一个元素是24, 个位元素对应的是4,查询count数组,小于等于4的元素有5个,因此将24填写在help数组的4号位置,count中4号位置的5减1;
  • 下一个元素是3, 个位元素对应的是3,查询count数组,小于等于3的元素有3个,因此将3填写在help数组的2号位置,count中3号位置的3减1;
  • 下一个元素是13, 个位元素对应的是3,查询count数组,小于等于3的元素有2个,因此将3填写在help数组的1号位置,count中3号位置的2减1;
  • 下一个元素是23, 个位元素对应的是3,查询count数组,小于等于3的元素有1个,因此将3填写在help数组的0号位置,count中3号位置的1减1;

完整代码

package class03;

import java.util.Arrays;

public class Code02_RadixSort {

	// only for no-negative value
	public static void radixSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		radixSort(arr, 0, arr.length - 1, maxbits(arr));
	}

	public static int maxbits(int[] arr) {
		int max = Integer.MIN_VALUE;
		for (int i = 0; i < arr.length; i++) {
			max = Math.max(max, arr[i]);
		}
		int res = 0;
		while (max != 0) {
			res++;
			max /= 10;
		}
		return res;
	}

	// arr[begin..end]排序
	public static void radixSort(int[] arr, int L, int R, int digit) {
		final int radix = 10;
		int i = 0, j = 0;
		// 有多少个数准备多少个辅助空间
		int[] bucket = new int[R - L + 1];
		for (int d = 1; d <= digit; d++) { // 有多少位就进出几次
			// 10个空间
		    // count[0] 当前位(d位)是0的数字有多少个
			// count[1] 当前位(d位)是(0和1)的数字有多少个
			// count[2] 当前位(d位)是(0、1和2)的数字有多少个
			// count[i] 当前位(d位)是(0~i)的数字有多少个
			int[] count = new int[radix]; // count[0..9]
			for (i = L; i <= R; i++) {
				j = getDigit(arr[i], d);
				count[j]++;
			}
			for (i = 1; i < radix; i++) {
				count[i] = count[i] + count[i - 1];
			}
			for (i = R; i >= L; i--) {
				j = getDigit(arr[i], d);
				bucket[count[j] - 1] = arr[i];
				count[j]--;
			}
			for (i = L, j = 0; i <= R; i++, j++) {
				arr[i] = bucket[j];
			}
		}
	}

	public static int getDigit(int x, int d) {
		return ((x / ((int) Math.pow(10, d - 1))) % 10);
	}

	// for test
	public static void comparator(int[] arr) {
		Arrays.sort(arr);
	}

	// for test
	public static int[] generateRandomArray(int maxSize, int maxValue) {
		int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
		for (int i = 0; i < arr.length; i++) {
			arr[i] = (int) ((maxValue + 1) * Math.random());
		}
		return arr;
	}

	// for test
	public static int[] copyArray(int[] arr) {
		if (arr == null) {
			return null;
		}
		int[] res = new int[arr.length];
		for (int i = 0; i < arr.length; i++) {
			res[i] = arr[i];
		}
		return res;
	}

	// for test
	public static boolean isEqual(int[] arr1, int[] arr2) {
		if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
			return false;
		}
		if (arr1 == null && arr2 == null) {
			return true;
		}
		if (arr1.length != arr2.length) {
			return false;
		}
		for (int i = 0; i < arr1.length; i++) {
			if (arr1[i] != arr2[i]) {
				return false;
			}
		}
		return true;
	}

	// for test
	public static void printArray(int[] arr) {
		if (arr == null) {
			return;
		}
		for (int i = 0; i < arr.length; i++) {
			System.out.print(arr[i] + " ");
		}
		System.out.println();
	}

	// for test
	public static void main(String[] args) {
		int testTime = 500000;
		int maxSize = 100;
		int maxValue = 100000;
		boolean succeed = true;
		for (int i = 0; i < testTime; i++) {
			int[] arr1 = generateRandomArray(maxSize, maxValue);
			int[] arr2 = copyArray(arr1);
			radixSort(arr1);
			comparator(arr2);
			if (!isEqual(arr1, arr2)) {
				succeed = false;
				printArray(arr1);
				printArray(arr2);
				break;
			}
		}
		System.out.println(succeed ? "Nice!" : "Fucking fucked!");

		int[] arr = generateRandomArray(maxSize, maxValue);
		printArray(arr);
		radixSort(arr);
		printArray(arr);

	}

}

稳定性

  •  相同元素排序保证先后顺序

分析

  • 桶排序思想下的排序都是不基于比较的排序
  • 时间复杂度为O(N),额外空间负载度O(M)
  • 应用范围有限,需要样本的数据状况满足桶的划分

汇总

  • 快速排序不是基于比较的排序

算法入门篇四 桶排序

对于排序的改进优化

  • 充分利用O(N*logN)和O(N^2)的排序的各自优势

数据规模很大的时候使用快速排序,当数据规模减少,数据项在60以内的时候,该换成插入排序,同时使用快速和插入两种方法,能进一步提高效率,减少时间复杂度。

  • 稳定性考虑

如果输入的数据是基础类型,使用快速排序;如果输入的类型是自定义的类型,使用插入、归并这些可以保证稳定性的排序方法

问题

  • 将一个数组中,所有的奇数移到数组的左边,所有的偶数移到数组的右边。保持相对次序不变的同时,要是时间复杂度为O(N),空间复杂度为O(1)。这个没法做????????????????
相关标签: 算法入门