欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PTA甲级考试真题练习18——1018 Public Bike Management

程序员文章站 2022-06-07 13:14:14
...

题目

PTA甲级考试真题练习18——1018 Public Bike Management

生词生字

  1. The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations
    公共自行车管理中心(PBMC)持续监控所有车站的实时通行能力
  2. A station is said to be in perfect condition if it is exactly half-full.
    一个站点如果正好处于半满状态被认为是完美的情况
  3. The stations are represented by vertices and the roads correspond to the edges
    站点用顶点表示并且边表示路长

思路

较难的求图的单源最短路径题,难点在于题意,题意读懂就好办
题目主要是说从PBMC开始向目的地一步一步的走,如果当前站点差自行车,则立即补上,并且累加总的需求和,如果不差或者多余,把多余的自行车累加到下一个站点,直到最终站点,最终站点如果有多的则全部返回PBMC中,后面的站点如果多余是不能往前面补充的最终按照最短路径<最小需求<最小返回进行排序,输出第一个
由题意可知,该题最佳算法是深度遍历不是Dijkstra算法,因为在深度遍历的过程中可以将每个站点的状态判断清楚,累加需求和并且将多余的传到下一个站点

#include <iostream>
#include<string.h>
#include<algorithm>
#include<vector>
#include<stack>
#include<map>
#include<set>
#include<queue>
#include<list>
using namespace std;
#define nmax 1000  //一个用作示例的小顺序表的最大长度
#define mint 999999

int graph[nmax][nmax];
int carnum[nmax];
int dest;
int capacity;
int min_dst = mint;  //最短路径
int edgenum;
int vnum;
int mark[nmax];

vector<int> tmpvec;
int needSend = 0;
int needBack = 0;

int half_max;
typedef struct path
{
	vector<int> vec; //存储路径
	int needSend;
	int needBack;
	int minPath;
}path;

path tmp_path;
vector<path> pathArray;
void printPath(const vector<int>& vec)
{
	cout << "0";
	for (const auto& p : vec)
	{
		cout << "->" << p;
	}
	cout << " ";
}
void DFS(int src, int dst, int lastBike)
{
	if (dst > min_dst) { return; }
	//如果遍历到了目标结点
	if (src == dest)
	{
		if (dst <= min_dst)
		{
			//如果该节点已经饱和
			if (lastBike + carnum[dest] >= half_max)
			{
				needBack = lastBike + carnum[dest] - half_max;
			}
			//否则补充
			else
			{
				needSend += half_max - (lastBike + carnum[dest]);
			}
			tmp_path.vec = tmpvec;
			tmp_path.needSend = needSend;
			tmp_path.needBack = needBack;
			tmp_path.minPath = dst;
			pathArray.push_back(tmp_path);
			needBack = 0;
			if(lastBike + carnum[dest] < half_max)
				needSend -= half_max - (lastBike + carnum[dest]);
			min_dst = dst;

		}
		return;
	}
	for (int i = 0; i < vnum; ++i)
	{
		if (graph[src][i] != mint && mark[i] == 0)
		{
			mark[i] = 1;
			tmpvec.push_back(i);
			int nextbike = 0;
			if (src != 0)
			{
				//如果该节点已经饱和
				if (lastBike + carnum[src] >= half_max)
				{
					nextbike = lastBike + carnum[src] - half_max;
				}
				//否则补充
				else
				{
					needSend += half_max - (lastBike + carnum[src]);
				}
			}
			DFS(i, dst + graph[src][i],nextbike);
			if (src != 0)
			{
				if (half_max > lastBike + carnum[src])
					needSend -= half_max - (lastBike + carnum[src]);
			}
			else
			{
				needSend = 0;
			}
			tmpvec.pop_back();
			mark[i] = 0;
		}
	}
}

bool cmp(const path& a, const path& b)
{
	if (a.minPath != b.minPath)
		return a.minPath < b.minPath;
	else
	{
		if (a.needSend != b.needSend)
			return a.needSend < b.needSend;
		else
			return a.needBack < b.needBack;
	}
}

int main()
{
	cin >> capacity >> vnum >> dest >> edgenum;
	vnum += 1;
	half_max = capacity / 2;
	for (int i = 0; i < vnum; ++i)
	{
		for (int j = 0; j < vnum; ++j)
		{
			graph[i][j] = mint;
		}
	}
	for (int i = 1; i < vnum; ++i)
	{
		cin >> carnum[i];
	}
	for (int i = 0; i < edgenum; ++i)
	{
		int u, v;
		cin >> u >> v;
		cin >> graph[u][v];
		graph[v][u] = graph[u][v];
	}
	fill(mark, mark + vnum, 0);
	mark[0] = 1;
	DFS(0,0,0);

	sort(pathArray.begin(), pathArray.end(), cmp);
	cout << pathArray[0].needSend << " ";
	printPath(pathArray[0].vec);
	cout << pathArray[0].needBack;
}