欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

[转]php与memcached服务器交互的分布式兑现源码分析[memcache版]

程序员文章站 2022-06-07 11:41:57
...
[转]php与memcached服务器交互的分布式实现源码分析[memcache版]

原文链接:http://www.cnblogs.com/luckcs/articles/2619846.html

前段时间,因为一个项目的关系,研究了php通过调用memcachememcached?PECL扩展库的接口存储到分布式缓存服务器的机制,在此做我根据他们各自的源码进行分析,希望能对这方面感兴趣的人有些帮助。
本篇文章我会针对php和memcache扩展库的交互根据源码展开分析。
PHP调用memcache的接口通常会是如下过程:

?

addServer('node1', 11211);  $mmc->addServer('node2', 11211, MemcacheConfig::MEMCACHE_PERSISTENT, 2);  $mmc->set('key', 'value');  echo $mmc->get('key');  $mmc->delete('key');

?短短几行代码,一个缓存key的生命周期就已经完整层现。从Memcache的初始化,到addServer添加两个服务器节点,接着set一个key到服务器上,然后get到这个key输出,最后delete这个key。在这个生命周期里,Memcache在底层究竟做了哪些事情,保证了数据存储服务器的均匀分布,数据的完整性?

?

接下来,我会根据上述生命周期的顺序,循序渐进的分析(由于主题是分布式算法的分析,所以接下来不相干的代码我会略去,很多分析我会直接备注在源码上)。


1. Memcache的初始化
对应PHP的代码:

?

$mmc = new Memcache();  

?对应C的代码:// Memcache类对应的方法名已经实际在c中实现过程的函数名,在接下来的分析中会用到。忽略不会分析到的方法。

static zend_function_entry php_memcache_class_functions[] = {  PHP_FALIAS(addserver, memcache_add_server, NULL)  PHP_FALIAS(set, memcache_set, NULL)  PHP_FALIAS(get, memcache_get, NULL)  PHP_FALIAS(delete, memcache_delete, NULL)  ......  };  PHP_MINIT_FUNCTION(memcache)  {  // 初始化Memcache类实体,给类定在php空间中的调用名称以及类所拥有的方法  zend_class_entry memcache_class_entry;  INIT_CLASS_ENTRY(memcache_class_entry, "Memcache", php_memcache_class_functions);  memcache_class_entry_ptr = zend_register_internal_class(&memcache_class_entry TSRMLS_CC);  ......  }  

?以上过程是在Module Initialization的环节已经做好,在new的过程中,并无其余处理。

?

2. 添加缓存服务器,使之成为分布式存储

对应PHP的代码:

$mmc->addServer('node1', 11211);  $mmc->addServer('node2', 11211, MemcacheConfig::MEMCACHE_PERSISTENT, 2); 

?由上面的php_memcache_class_functions结构可以看出,addServer方法对应的是memcache_add_server函数,因此对应C的代码:

PHP_FUNCTION(memcache_add_server)  {  zval **connection, *mmc_object = getThis(), *failure_callback = NULL;  // 整个Memcache中最重要的一个结构mmc_pool_t  mmc_pool_t *pool;  // 当前新添服务器的结构变量  mmc_t *mmc;  ......  // 如果pool之前没有初始化过,则初始化  if (zend_hash_find(Z_OBJPROP_P(mmc_object), "connection", sizeof("connection"), (void **) &connection) == FAILURE) {  // 调用mmp_pool_new完成初始化  pool = mmc_pool_new(TSRMLS_C);  ......  }  else {  ......  }  //将新增服务器添加到pool中  mmc_pool_add(pool, mmc, weight);  RETURN_TRUE;  }  

?来看下mmc_pool_t结构的定义:

typedef struct mmc_pool {  mmc_t **servers; // 所有服务器的状态  int num_servers; // 服务器数量  mmc_t **requests; // 根据get的array key请求顺序返回的服务器数组状态  int compress_threshold; // 待存储的数据压缩的下限值  double min_compress_savings; // 待存储的数据最小的压缩百分比  zend_bool in_free; // 标记该pool是否被释放  mmc_hash_t *hash; // hash策略容器  void *hash_state; // hash函数  } mmc_pool_t;  

?然后我们看下mmc_hash_t的结构,再接下去的分析中会用到:// 结构定义中包含了四种抽象函数,作为基本结构,用于定义子结构

typedef struct mmc_hash {  mmc_hash_create_state create_state; // 创建hash策略状态,主要是接纳了hash函数算法  mmc_hash_free_state free_state; // 释放hash策略状态  mmc_hash_find_server find_server; // 根据key和分布式算法定位到某台服务器  mmc_hash_add_server add_server; // 根据hash策略、算法以及权重值添加服务器资源  } mmc_hash_t;  

?接着我们追踪memcache_add_server函数中的mmc_pool_new函数调用方法:

?

?

?

typedef struct mmc_hash {  mmc_hash_create_state create_state; // 创建hash策略状态,主要是接纳了hash函数算法  mmc_hash_free_state free_state; // 释放hash策略状态  mmc_hash_find_server find_server; // 根据key和分布式算法定位到某台服务器  mmc_hash_add_server add_server; // 根据hash策略、算法以及权重值添加服务器资源  } mmc_hash_t;  

?现在初始化hash算法已经逐渐显露,继续追踪mmc_pool_init_hash函数:

static void mmc_pool_init_hash(mmc_pool_t *pool TSRMLS_DC) /* {{{ */  {  mmc_hash_function hash;// 初始化hash函数  // 根据php.ini中的memcache.hash_strategy配置选择hash存储策略,默认为标准hash存储策略  switch (MEMCACHE_G(hash_strategy)) {  case MMC_CONSISTENT_HASH:  pool->hash = &mmc_consistent_hash;// 采用持久化hash存储策略  break;  default:  pool->hash = &mmc_standard_hash;// 采用标准hash存储策略  }  

?// 根据php.ini中的memcache.hash_function配置选择hash函数,默认为crc32算法

switch (MEMCACHE_G(hash_function)) {  case MMC_HASH_FNV1A:  hash = &mmc_hash_fnv1a; // 采用fnv1a算法  break;  default:  hash = &mmc_hash_crc32; // 采用crc32算法  }  // hash策略中根据选择的hash函数创建对应的状态  pool->hash_state = pool->hash->create_state(hash);  }  

?根据上面的两个switch可以知道,在create_state的时候,是有两种策略选择的可能性,接着传入的hash参数也存在两种可能性,这里我先分析标准hash存储策略,以及对应的两种hash算法,然后再分析持久化hash策略。

?

?

先看下mmc_consistent_hash结构:// 根据mmc_hash_t的定义包含了四种具体函数实现

mmc_hash_t mmc_standard_hash = {  mmc_standard_create_state,  mmc_standard_free_state,  mmc_standard_find_server,  mmc_standard_add_server  };

?由上可知,pool->hash->create_state的函数调用实际是对mmc_standard_create_state的函数调用,继续看mmc_standard_create_state函数代码的实现:

// hash策略状态  typedef struct mmc_standard_state {  int num_servers; // 服务器数量  mmc_t **buckets; // 哈希桶,和权重值相关  int num_buckets; // 哈系桶的数量  mmc_hash_function hash; // hash算法  } mmc_standard_state_t;    void *mmc_standard_create_state(mmc_hash_function hash) /* {{{ */  {  // 初始化状态  mmc_standard_state_t *state = emalloc(sizeof(mmc_standard_state_t));  memset(state, 0, sizeof(mmc_standard_state_t));  // 选择的hash函数赋给hash属性  state->hash = hash;  return state;  }  

?crc的算法实现:

static unsigned int mmc_hash_crc32(const char *key, int key_len) /* CRC32 hash {{{ */  {  unsigned int crc = ~0;  int z;    for (z=0; z

?有关CRC32再深入的实现可以参考Cyclic redundancy check

?

?

然后来看看fnv算法实现:

/* 32 bit magic FNV-1a prime and init */  #define FNV_32_PRIME 0x01000193  #define FNV_32_INIT 0x811c9dc5  static unsigned int mmc_hash_fnv1a(const char *key, int key_len) /* FNV-1a hash {{{ */  {  unsigned int hval = FNV_32_INIT;  int z;    for (z=0; z

?具体fnv算法的深入实现可以参考Fowler–Noll–Vo hash function

?

最后我们看看mmc_consistent_hash结构:

mmc_hash_t mmc_consistent_hash = {  mmc_consistent_create_state,  mmc_consistent_free_state,  mmc_consistent_find_server,  mmc_consistent_add_server  };

?一样是四个函数,看下对应的create_state中的mmc_consistent_create_state的实现:

?

?

/* number of precomputed buckets, should be power of 2 */  #define MMC_CONSISTENT_BUCKETS 1024    typedef struct mmc_consistent_point {  mmc_t *server; // 服务器状态  unsigned int point; // 对应的指针  } mmc_consistent_point_t;    typedef struct mmc_consistent_state {  int num_servers; // 服务器数量  mmc_consistent_point_t *points; // 持久化服务器指针  int num_points; // 指针数量  mmc_t *buckets[MMC_CONSISTENT_BUCKETS]; // 哈希桶  int buckets_populated; //标记哈希桶是否计算过  mmc_hash_function hash; // hash函数  } mmc_consistent_state_t;    void *mmc_consistent_create_state(mmc_hash_function hash) /* {{{ */  {  // 初始化state  mmc_consistent_state_t *state = emalloc(sizeof(mmc_consistent_state_t));  memset(state, 0, sizeof(mmc_consistent_state_t));  // 将hash函数赋值给hash属性  state->hash = hash;  return state;  }  

?至此,memcache_add_server中mmc_pool_new函数流程结束,接着来看mmc_pool_add函数:

?

?

void mmc_pool_add(mmc_pool_t *pool, mmc_t *mmc, unsigned int weight) /* {{{ */  {  /* add server and a preallocated request pointer */  if (pool->num_servers) {  pool->servers = erealloc(pool->servers, sizeof(mmc_t *) * (pool->num_servers + 1));  pool->requests = erealloc(pool->requests, sizeof(mmc_t *) * (pool->num_servers + 1));  }  else {  pool->servers = emalloc(sizeof(mmc_t *));  pool->requests = emalloc(sizeof(mmc_t *));  }    pool->servers[pool->num_servers] = mmc;  pool->num_servers++;  // 根据pool状态,当前要添加的服务器状态和权重调用add_server函数  pool->hash->add_server(pool->hash_state, mmc, weight);  }

?由上面的说明可知add_server在标准hash模式下对应mmc_standard_add_server函数:

void mmc_standard_add_server(void *s, mmc_t *mmc, unsigned int weight) /* {{{ */  {  mmc_standard_state_t *state = s;  int i;    // 哈希桶初始化或重新分配相应的权重数值对应的空间  if (state->num_buckets) {  state->buckets = erealloc(state->buckets, sizeof(mmc_t *) * (state->num_buckets + weight));  }  else {  state->buckets = emalloc(sizeof(mmc_t *) * (weight));  }  // 在某个区间内为哈希桶赋予服务器状态  for (i=0; inum_buckets + i] = mmc;  }    state->num_buckets += weight;  state->num_servers++;  }  

?在持久化hash模式下,对应的是mmc_consistent_add_server函数:

#define MMC_CONSISTENT_POINTS 160 /* points per server */    void mmc_consistent_add_server(void *s, mmc_t *mmc, unsigned int weight) /* {{{ */  {  mmc_consistent_state_t *state = s;  int i, key_len, points = weight * MMC_CONSISTENT_POINTS;    /* buffer for "host:port-i\0" */  char *key = emalloc(strlen(mmc->host) + MAX_LENGTH_OF_LONG * 2 + 3);    /* add weight * MMC_CONSISTENT_POINTS number of points for this server */  state->points = erealloc(state->points, sizeof(mmc_consistent_point_t) * (state->num_points + points));    // 将区块内的server赋予当前服务器状态,point赋予hash函数处理后的值  for (i=0; ihost, mmc->port, i);  state->points[state->num_points + i].server = mmc;  state->points[state->num_points + i].point = state->hash(key, key_len);  MMC_DEBUG(("mmc_consistent_add_server: key %s, point %lu", key, state->points[state->num_points + i].point));  }    state->num_points += points;  state->num_servers++;    // 新增加服务器后需重新计算buckets顺序  state->buckets_populated = 0;    efree(key);  }  

?以上代码有持久化hash算法的赋值实现,具体深入的了解请看Consistent hashing和国内大侠charlee翻译的小日本的文章memcached全面剖析–PDF总结篇

?

?

Consistent hashing 算法最大的特点是当你的缓存服务器数量变更的时候,它能够最大化的保留原有的缓存不变,而不需要重新分布原有缓存的服务器位置。
至此,整个memcache_add_server流程结束。
3. 向缓存服务器保存数据

对应PHP的代码:

$mmc->set('key', 'value'); 

?由上面的分析可知,set方法对应的是memcache_set函数:

/* {{{ proto bool memcache_set( object memcache, string key, mixed var [, int flag [, int expire ] ] ) Sets the value of an item. Item may exist or not */  PHP_FUNCTION(memcache_set)  {  // Memcache对象中的add,set和replace皆会走该函数  php_mmc_store(INTERNAL_FUNCTION_PARAM_PASSTHRU, "set", sizeof("set") - 1);  } 

?看php_mmc_store函数:

static void php_mmc_store(INTERNAL_FUNCTION_PARAMETERS, char *command, int command_len) /* {{{ */  {  mmc_pool_t *pool;  ......  // 获得pool  if (!mmc_get_pool(mmc_object, &pool TSRMLS_CC) || !pool->num_servers) {  RETURN_FALSE;  }  // 对不同的存储的值类型进行不同的处理  switch (Z_TYPE_P(value)) {  // 字符串类型  case IS_STRING:  result = mmc_pool_store(  pool, command, command_len, key_tmp, key_tmp_len, flags, expire,   Z_STRVAL_P(value), Z_STRLEN_P(value) TSRMLS_CC);  break;  // 长整型,浮点型,布尔型  case IS_LONG:  case IS_DOUBLE:  case IS_BOOL: {  ......  result = mmc_pool_store(  pool, command, command_len, key_tmp, key_tmp_len, flags, expire,   Z_STRVAL(value_copy), Z_STRLEN(value_copy) TSRMLS_CC);    zval_dtor(&value_copy);  break;  }  // 默认为数组类型  default: {  ......  result = mmc_pool_store(  pool, command, command_len, key_tmp, key_tmp_len, flags, expire,   buf.c, buf.len TSRMLS_CC);  }  }  ......  }  

?由上代码可以看出,存储数据主要是交由mmc_pool_store处理:

int mmc_pool_store(mmc_pool_t *pool, const char *command, int command_len, const char *key, int key_len, int flags, int expire, const char *value, int value_len TSRMLS_DC) /* {{{ */  {  /* 该省略过程处理数据压缩,处理待发送的请求数据 */  ......    // 通过key确定待保存的服务器  while (result 

?接着我们看下mmc_pool_find是处理的

#define mmc_pool_find(pool, key, key_len) \  pool->hash->find_server(pool->hash_state, key, key_len)  

?原来是再次多态调用了find_server函数,由之前的分析可以得知find_server在标准hash模式中的函数为mmc_standard_find_server,在持久化hash模式中的函数为mmc_consistent_find_server,一样先看

mmc_standard_find_servermmc_t *mmc_standard_find_server(void *s, const char *key, int key_len TSRMLS_DC) /* {{{ */  {  mmc_standard_state_t *state = s;  mmc_t *mmc;    if (state->num_servers > 1) {  // 用设定的hash函数算法,找到对应的服务器  unsigned int hash = mmc_hash(state, key, key_len), i;  mmc = state->buckets[hash % state->num_buckets];    // 如果获取到的服务器状态有问题,则重新hash遍历寻找到可用的缓存服务器为止   for (i=0; !mmc_open(mmc, 0, NULL, NULL TSRMLS_CC) && MEMCACHE_G(allow_failover) && ihost, mmc->port, mmc->status));    hash += mmc_hash(state, next_key, next_len);  mmc = state->buckets[hash % state->num_buckets];    efree(next_key);  }  }  else {  mmc = state->buckets[0];  mmc_open(mmc, 0, NULL, NULL TSRMLS_CC);  }    return mmc->status != MMC_STATUS_FAILED ? mmc : NULL;  }  

?再看

mmc_consistent_find_servermmc_t *mmc_consistent_find_server(void *s, const char *key, int key_len TSRMLS_DC) /* {{{ */  {  mmc_consistent_state_t *state = s;  mmc_t *mmc;    if (state->num_servers > 1) {  unsigned int i, hash = state->hash(key, key_len);  // 如果哈希桶没有进行过排序,则进行圆环排序操作  if (!state->buckets_populated) {  mmc_consistent_populate_buckets(state);  }  mmc = state->buckets[hash % MMC_CONSISTENT_BUCKETS];    // 如果获取到的服务器状态有问题,则重新hash遍历寻找到可用的缓存服务器为止   for (i=0; !mmc_open(mmc, 0, NULL, NULL TSRMLS_CC) && MEMCACHE_G(allow_failover) && ihost, mmc->port, mmc->status));    hash = state->hash(next_key, next_len);  mmc = state->buckets[hash % MMC_CONSISTENT_BUCKETS];    efree(next_key);  }  }  else {  mmc = state->points[0].server;  mmc_open(mmc, 0, NULL, NULL TSRMLS_CC);  }    return mmc->status != MMC_STATUS_FAILED ? mmc : NULL;  }  // 持久化哈希算法的核心部分  static void mmc_consistent_populate_buckets(mmc_consistent_state_t *state) /* {{{ */  {  unsigned int z, step = 0xffffffff / MMC_CONSISTENT_BUCKETS;    qsort((void *)state->points, state->num_points, sizeof(mmc_consistent_point_t), mmc_consistent_compare);  for (z=0; zbuckets[z] = mmc_consistent_find(state, step * z);  }    state->buckets_populated = 1;  }  static int mmc_consistent_compare(const void *a, const void *b) /* {{{ */  {  if (((mmc_consistent_point_t *)a)->point point) {  return -1;  }  if (((mmc_consistent_point_t *)a)->point > ((mmc_consistent_point_t *)b)->point) {  return 1;  }  return 0;  }  static mmc_t *mmc_consistent_find(mmc_consistent_state_t *state, unsigned int point) /* {{{ */  {  int lo = 0, hi = state->num_points - 1, mid;    while (1) {  /* point is outside interval or lo >= hi, wrap-around */  if (point points[lo].point || point > state->points[hi].point) {  return state->points[lo].server;  }    /* test middle point */  mid = lo + (hi - lo) / 2;  MMC_DEBUG(("mmc_consistent_find: lo %d, hi %d, mid %d, point %u, midpoint %u", lo, hi, mid, point, state->points[mid].point));    /* perfect match */  if (point points[mid].point && point > (mid ? state->points[mid-1].point : 0)) {  return state->points[mid].server;  }    /* too low, go up */  if (state->points[mid].point 

?至此,memcache_set过程结束。

4. 向缓存服务器获得已保存的数据

对应PHP的代码:

echo $mmc->get('key');  

?由上面的分析可知,get方法对应的是memcache_get函数:

PHP_FUNCTION(memcache_get)  {  ......  // 获得pool  if (!mmc_get_pool(mmc_object, &pool TSRMLS_CC) || !pool->num_servers) {  RETURN_FALSE;  }  // 当key不为数组的情况下处理  if (Z_TYPE_P(zkey) != IS_ARRAY) {  // 检查key的合法性  if (mmc_prepare_key(zkey, key, &key_len TSRMLS_CC) == MMC_OK) {  // 获取key获取value  if (mmc_exec_retrieval_cmd(pool, key, key_len, &return_value, flags TSRMLS_CC) 

?接着看mmc_exec_retrieval_cmd和mmc_exec_retrieval_cmd_multi函数:

int mmc_exec_retrieval_cmd(mmc_pool_t *pool, const char *key, int key_len, zval **return_value, zval *return_flags TSRMLS_DC) /* {{{ */  {  mmc_t *mmc;  char *command, *value;  int result = -1, command_len, response_len, value_len, flags = 0;    MMC_DEBUG(("mmc_exec_retrieval_cmd: key '%s'", key));    command_len = spprintf(&command, 0, "get %s", key);  // 遍历寻找到key对应的value值  while (result requests中  while (zend_hash_get_current_data_ex(Z_ARRVAL_P(keys), (void **)&zkey, &pos) == SUCCESS) {  if (mmc_prepare_key(*zkey, key, &key_len TSRMLS_CC) == MMC_OK) {  /* schedule key if first round or if missing from result */  if ((!i || !zend_hash_exists(Z_ARRVAL_PP(return_value), key, key_len)) &&  // 根据key寻找到服务器  (mmc = mmc_pool_find(pool, key, key_len TSRMLS_CC)) != NULL) {  if (!(mmc->outbuf.len)) {  smart_str_appendl(&(mmc->outbuf), "get", sizeof("get")-1);  pool->requests[num_requests++] = mmc;  }    smart_str_appendl(&(mmc->outbuf), " ", 1);  smart_str_appendl(&(mmc->outbuf), key, key_len);  MMC_DEBUG(("mmc_exec_retrieval_cmd_multi: scheduled key '%s' for '%s:%d' request length '%d'", key, mmc->host, mmc->port, mmc->outbuf.len));  }  }    zend_hash_move_forward_ex(Z_ARRVAL_P(keys), &pos);  }    ......    } while (result_status 

?由上可见分布式hash的核心函数皆为mmc_pool_find,首先找到key对应的服务器资源,然后根据服务器资源请求数据。

至此,memcache_get的过程结束。
5.向缓存服务器删除已保存的数据
对应的php代码:

$mmc->delete('key');  

?由之前的分析可知,delete对应的为

memcache_delete:/* {{{ proto bool memcache_delete( object memcache, string key [, int expire ]) Deletes existing item */  PHP_FUNCTION(memcache_delete)  {  mmc_t *mmc;  mmc_pool_t *pool;  int result = -1, key_len;  zval *mmc_object = getThis();  char *key;  long time = 0;  char key_tmp[MMC_KEY_MAX_SIZE];  unsigned int key_tmp_len;    if (mmc_object == NULL) {  if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "Os|l", &mmc_object, memcache_class_entry_ptr, &key, &key_len, &time) == FAILURE) {  return;  }  }  else {  if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|l", &key, &key_len, &time) == FAILURE) {  return;  }  }    if (!mmc_get_pool(mmc_object, &pool TSRMLS_CC) || !pool->num_servers) {  RETURN_FALSE;  }    if (mmc_prepare_key_ex(key, key_len, key_tmp, &key_tmp_len TSRMLS_CC) != MMC_OK) {  RETURN_FALSE;  }    // 先获得服务器资源  while (result  0) {  RETURN_TRUE;  }  RETURN_FALSE;  }  /* }}} */ 

?

?

?

?

[转]php与memcached服务器交互的分布式兑现源码分析[memcache版]

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn核实处理。

相关文章

相关视频


网友评论

文明上网理性发言,请遵守 新闻评论服务协议

我要评论
  • [转]php与memcached服务器交互的分布式兑现源码分析[memcache版]
  • 专题推荐