欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  网络运营

分享Pandas库中的一些宝藏函数transform()

程序员文章站 2022-03-10 10:01:07
pandas函数的核心功能是,既计算了统计值,又保留了明细数据。为了更好地理解transform和agg的不同,下面从实际的应用场景出发进行对比。aggregation会返回数据的缩减版本,而tran...

pandas函数的核心功能是,既计算了统计值,又保留了明细数据。为了更好地理解transform和agg的不同,下面从实际的应用场景出发进行对比。

aggregation会返回数据的缩减版本,而transformation能返回完整数据的某一变换版本供我们重组。这样的transformation,输出的形状和输入一致。一个常见的例子是通过减去分组平均值来居中数据。

#数据构造
data = pd.dataframe(
{"company":['百度', '阿里', '百度', '阿里', '百度', '腾讯', '腾讯', '阿里', '腾讯', '阿里'],
"salary":[43000, 24000, 40000, 39000, 8000, 47000, 25000, 16000, 21000, 38000],
"age":[25, 34, 49, 42, 28, 23, 45, 21, 34, 29]}) 
data
  company  salary  age
0      百度   43000   25
1      阿里   24000   34
2      百度   40000   49
3      阿里   39000   42
4      百度    8000   28
5      腾讯   47000   23
6      腾讯   25000   45
7      阿里   16000   21
8      腾讯   21000   34
9      阿里   38000   29

1、transform作用于series

1)单个变换函数

当transform作用于单列series时较为简单 ,对salary列进行transform变换我们可以传入任意的非聚合类函数,比如对工资列对数化

import pandas as pd 
import numpy  as np
# 对工资对数化
data['salary'].transform(np.log) 
0    10.668955
1    10.085809
2    10.596635
3    10.571317
4     8.987197
5    10.757903
6    10.126631
7     9.680344
8     9.952278
9    10.545341
name: salary, dtype: float64

除了内置函数,还可以传入lambda函数

# lambda函数
data['salary'].transform(lambda s: s+1)
0    43001
1    24001
2    40001
3    39001
4     8001
5    47001
6    25001
7    16001
8    21001
9    38001
name: salary, dtype: int64

2)多个变换函数

也可以传入包含多个变换函数的列表来一口气计算出多列结果:

data['salary'].transform([np.log, lambda s: s+1, np.sqrt])
   log  <lambda>        sqrt
0  10.668955     43001  207.364414
1  10.085809     24001  154.919334
2  10.596635     40001  200.000000
3  10.571317     39001  197.484177
4   8.987197      8001   89.442719
5  10.757903     47001  216.794834
6  10.126631     25001  158.113883
7   9.680344     16001  126.491106
8   9.952278     21001  144.913767
9  10.545341     38001  194.935887

而又因为transform传入的函数,在执行运算时接收的输入参数是对应的整列数据,所以我们可以利用这个特点实现诸如数据标准化、归一化等需要依赖样本整体统计特征的变换过程:

# 利用transform进行数据标准化
data['salary'].transform(lambda s: (s - s.mean()) / s.std())
0    0.991038
1   -0.468630
2    0.760564
3    0.683739
4   -1.697825
5    1.298337
6   -0.391806
7   -1.083228
8   -0.699104
9    0.606915
name: salary, dtype: float64

2、 transform作用于dataframe

当transform作用于整个dataframe时,实际上就是将传入的所有变换函数作用到每一列中:

data.loc[:,'salary':'age'].transform(lambda s:(s-s.mean()) /s.std())
     salary       age
0  0.991038 -0.832050
1 -0.468630  0.104006
2  0.760564  1.664101
3  0.683739  0.936057
4 -1.697825 -0.520031
5  1.298337 -1.040063
6 -0.391806  1.248075
7 -1.083228 -1.248075
8 -0.699104  0.104006
9  0.606915 -0.416025

而当传入多个变换函数时,对应的返回结果格式类似agg中的机制,会生成multiindex格式的字段名

data.loc[:, 'salary': 'age'].transform([np.log, lambda s: s+1])
  salary                age         
         log <lambda>       log <lambda>
0  10.668955    43001  3.218876       26
1  10.085809    24001  3.526361       35
2  10.596635    40001  3.891820       50
3  10.571317    39001  3.737670       43
4   8.987197     8001  3.332205       29
5  10.757903    47001  3.135494       24
6  10.126631    25001  3.806662       46
7   9.680344    16001  3.044522       22
8   9.952278    21001  3.526361       35
9  10.545341    38001  3.367296       30

而且由于作用的是dataframe,还可以利用字典以键值对的形式,一口气为每一列配置单个或多个变换函数:

(data.loc[:, 'salary': 'age']
.transform({'age': lambda s: (s - s.mean()) / s.std(),
                'salary': [np.log, np.sqrt]}))
   age     salary            
   <lambda>        log        sqrt
0 -0.832050  10.668955  207.364414
1  0.104006  10.085809  154.919334
2  1.664101  10.596635  200.000000
3  0.936057  10.571317  197.484177
4 -0.520031   8.987197   89.442719
5 -1.040063  10.757903  216.794834
6  1.248075  10.126631  158.113883
7 -1.248075   9.680344  126.491106
8  0.104006   9.952278  144.913767
9 -0.416025  10.545341  194.935887

3、transform作用于groupby分组后

在原来的数据中,我们知道了如何求不同公司的平均薪水,假如需要在原数据集中新增一列salary_mean,代表该公司的平均薪水,该怎么实现呢?

data['salary_mean'] = data.groupby('company')[['salary']].transform('mean')
data 
  company  salary  age   salary_mean
0      百度   43000   25  30333.333333
1      阿里   24000   34  29250.000000
2      百度   40000   49  30333.333333
3      阿里   39000   42  29250.000000
4      百度    8000   28  30333.333333
5      腾讯   47000   23  31000.000000
6      腾讯   25000   45  31000.000000
7      阿里   16000   21  29250.000000
8      腾讯   21000   34  31000.000000
9      阿里   38000   29  29250.000000

通过上面的数据可以看出,利用transform输出既得到了统计数据,形状也没有变化。

当然,也可对多个数据列进行计算

data.groupby('company')[['salary', 'age']].transform('mean')
         salary   age
0  30333.333333  34.0
1  29250.000000  31.5
2  30333.333333  34.0
3  29250.000000  31.5
4  30333.333333  34.0
5  31000.000000  34.0
6  31000.000000  34.0
7  29250.000000  31.5
8  31000.000000  34.0
9  29250.000000  31.5

我们也可以用map函数实现类似的功能,但是稍微复杂点,但是有助于我们理解transform的含义。

avg_dict = data.groupby('company')['salary'].mean().to_dict()
avg_dict#得到了一个平均工资的字典
{'百度': 30333.333333333332, '腾讯': 31000.0, '阿里': 29250.0}
#利用map函数,将得到的字典映射到对应的列
data['salary_mean'] = data['company'].map(avg_dict)
data
company  salary  age   salary_mean
0      百度   43000   25  30333.333333
1      阿里   24000   34  29250.000000
2      百度   40000   49  30333.333333
3      阿里   39000   42  29250.000000
4      百度    8000   28  30333.333333
5      腾讯   47000   23  31000.000000
6      腾讯   25000   45  31000.000000
7      阿里   16000   21  29250.000000
8      腾讯   21000   34  31000.000000
9      阿里   38000   29  29250.000000

以图解的方式来看看进行groupby后transform的实现过程(公司列包含abc,salary列为每个员工的工资明细):

分享Pandas库中的一些宝藏函数transform()

上图中的大方框是transform和agg 所不一样的地方,对agg而言,会计算并聚合得到 a,b,c 公司对应的均值并直接返回,每个公司一条数据,但对transform而言,则会对每一条数据求得相应的结果,同一组内的样本会有相同的值,组内求完均值后会按照原索引的顺序返回结果。

以上就是分享pandas中的一些宝藏函数transform()的详细内容,更多关于pandas函数transform()的资料请关注其它相关文章!