数据结构之二叉树:二叉查找树,Python代码实现——10
程序员文章站
2022-06-07 08:21:50
...
数据结构之二叉查找树的代码实现
定义
- 二叉查找树(Binary Search Tree,BST),是一种内存中特殊的树类型的存储结构,它允许对存储在其结点的数据进行增删改查,或者用作动态的数据集合,或是通过key查找对应value的查找表;
创建结点
- 设计:可以使用顺序表或链表实现二叉树,这里使用链表实现,在学习堆时再使用顺序表实现
使用链表结点设计:
class Node:
def __init__(self, key=None, value=None):
self.key = key
self.value = value
self.left = None
self.right = None
left和right分别代表左右子结点,key是可比较的,用于进行顺序匹配;value储存值
实现的功能
- 构造方法__init__(),root为根结点,默认为None,len为树的大小
- size()获取BST中元素个数
- put(_key, _value)向树中添加键值对元素,元素按key排序,返回添加元素后的新树
- get(_key)通过键获取树中对应元素的值
- delete(_key)通过键删除树中对应的元素
- min_key()获取最小的key
- max_key()获取最大的key
Python代码实现
import operator
class BinarySearchTree:
def __init__(self):
self.root = None
self.len = 0
def size(self):
return self.len
def put(self, _key, _value):
"""Put an element into this tree and return the new tree"""
def put_into(node, _key, _value):
if not node:
self.len += 1
return Node(_key, _value)
if operator.lt(_key, node.key):
# print(f"left: {node}")
node.left = put_into(node.left, _key, _value)
elif operator.gt(_key, node.key):
# print(f"right: {node}")
node.right = put_into(node.right, _key, _value)
elif operator.eq(_key, node.key):
node.value = _value
return node
self.root = put_into(self.root, _key, _value)
return self.root
def get(self, _key):
"""Get element from this tree according to the given _key"""
def get_value_by_key(node, _key):
if not node:
return
if operator.lt(_key, node.key):
return get_value_by_key(node.left, _key)
elif operator.gt(_key, node.key):
return get_value_by_key(node.right, _key)
else:
return node.value
return get_value_by_key(self.root, _key)
def delete(self, _key):
"""Delete an element according to its key"""
def delete_value_by_key(node, _key):
# When tree(sub-tree) is none, return none
if not node:
return
# When the tree is not none
# Find the element according to its key
# When _key is little than the current node's key, recursively find the left sub-tree
# ,and finally return its result to the node.left
if operator.lt(_key, node.key):
node.left = delete_value_by_key(node.left, _key)
# When _key is bigger than the current node's key, recursively find the right sub-tree
# ,and finally return its result to the node.right
elif operator.gt(_key, node.key):
node.right = delete_value_by_key(node.right, _key)
# ELse, we have found the to-delete-node where _key==node.key
else:
# Now, we could start to do the delete-action
self.len -= 1
to_delete_node = node
if node == self.root:
self.root = None
return
node = None
# When the node we found had no left child tree, return its right child sub-tree
if not to_delete_node.left:
return to_delete_node.right
# As similar to the node's left child tree above
elif not to_delete_node.right:
return to_delete_node.left
else:
# Else, find the minimum-key element from its right child sub-tree
min_right_tree = to_delete_node.right
pre = min_right_tree
# The minimum will always be in the most left
while min_right_tree.left:
pre = min_right_tree
min_right_tree = min_right_tree.left
# Delete the minimum's edge from its parent node
pre.left = None
# Substitute the minimum with the to-delete node:
# Substitute the to-delete-node's left with the minimum's left
min_right_tree.left = to_delete_node.left
# Substitute the to-delete node's right with the minimum's right
min_right_tree.right = to_delete_node.right
# Return to its original node's left/right
return min_right_tree
return delete_value_by_key(self.root, _key)
def min_key(self):
"""Find the minimum key"""
def min_node(node):
while node.left:
node = node.left
return node
return min_node(self.root).key
def max_key(self):
"""Find the maximum key"""
def max_node(node):
while node.right:
node = node.right
return node
return max_node(self.root).key
主要代码解释:
put()插入元素:使用递归,按照从上到下从左到右的顺序,依次和插入的元素比较
- 1.如果当前树中没有任何一个结点,则直接把新结点当做根结点使用并返回
- 2.如果当前树不为空, 则从根结点开始与传入的元素的key进行比较:
2.1如果新结点的key小于当前结点的key ,则继续找当前结点的左子结点;
2.2如果新结点的key大于当前结点的key ,则继续找当前结点的右子结点;
2.3如果新结点的key等于当前结点的key ,则树中已经存在这样的结点,替换该结点的value值即可。
delete()删除元素:跟插入元素类似,也是使用递归,寻找的顺序按照从上到下从左到右的顺序,依次和插入的元素比较,如果找到key相等的元素则做删除动作
- 如果找到key相等的元素,则只需要往这个结点的右子树的左边最深处寻找,根据排序的规律,找到的元素与key相等的元素交换位置即可
其中operator模块不是必要,Python中使用比较符号即可直接比较数字和字母
代码测试
if __name__ == '__main__':
BST = BinarySearchTree()
BST.put('e', '5')
BST.put('b', '2')
BST.put('g', '7')
BST.put('a', '1')
BST.put('d', '4')
BST.put('f', '6')
BST.put('h', '8')
BST.put('c', '3')
print([(key, BST.get(key)) for key in BST.pre_ergodic()])
print([(key, BST.get(key)) for key in BST.mid_ergodic()])
print([(key, BST.get(key)) for key in BST.post_ergodic()])
print([(key, BST.get(key)) for key in BST.layer_ergodic()])
print(f"After function put(), the size of this binary tree is {BST.size()} ")
key = 'a'
print(f"Get element by key[{key}]: {BST.get(key)}")
key = 'b'
BST.delete(key)
print(f"After deleting an element(key[{key}]), the size of this tree: {BST.size()}")
print(f"Get the deleted element(key[{key}]), it should be none: {BST.get(key)}")
print(f"Get the deleted element(key[{'a'}]), it should be none: {BST.get('a')}")
测试结果
After function put(), the size of this binary tree is 8
Get element by key[a]: 1
After deleting an element(key[b]), the size of this tree: 7
Get the deleted element(key[b]), it should be none: None
Get the deleted element(key[a]), it should be none: 1
Get the minimum key: a
Get the maximum key: h
下一节,将继续实现BST的先序遍历、中序遍历、后序遍历和层序遍历
上一篇: 算法之归并排序/JAVA
下一篇: 前端分析性能监控(2019-9)