欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

【OpenCV2.4】SVM处理线性不可分的例子

程序员文章站 2022-06-06 15:33:51
...

【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】 目的 实际事物模型中,并非所有东西都是线性可分的。 需要寻找一种方法对线性不可分数据进行划分。 原理 ,我们推导出对于线性可分数据,最佳划分超平面应满足: 现在我们想引入

【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】

目的

  • 实际事物模型中,并非所有东西都是线性可分的。
  • 需要寻找一种方法对线性不可分数据进行划分。

原理

,我们推导出对于线性可分数据,最佳划分超平面应满足:

    【OpenCV2.4】SVM处理线性不可分的例子

现在我们想引入一些东西,来表示那些被错分的数据点(比如噪点),对划分的影响。

如何来表示这些影响呢?

被错分的点,离自己应当存在的区域越远,就代表了,这个点“错”得越严重。

所以我们引入【OpenCV2.4】SVM处理线性不可分的例子,为对应样本离同类区域的距离。

【OpenCV2.4】SVM处理线性不可分的例子

接下来的问题是,如何将这种错的程度,转换为和原模型相同的度量呢?

我们再引入一个常量C,表示【OpenCV2.4】SVM处理线性不可分的例子和原模型度量的转换关系,用C对【OpenCV2.4】SVM处理线性不可分的例子进行加权和,来表征错分点对原模型的影响,这样我们得到新的最优化问题模型:

    【OpenCV2.4】SVM处理线性不可分的例子

关于参数C的选择, 明显的取决于训练样本的分布情况。 尽管并不存在一个普遍的答案,但是记住下面几点规则还是有用的:

  • C比较大时分类错误率较小,但是间隔也较小。 在这种情形下, 错分类对模型函数产生较大的影响,既然优化的目的是为了最小化这个模型函数,那么错分类的情形必然会受到抑制。
  • C比较小时间隔较大,但是分类错误率也较大。 在这种情形下,模型函数中错分类之和这一项对优化过程的影响变小,优化过程将更加关注于寻找到一个能产生较大间隔的超平面。

说白了,C的大小表征了,错分数据对原模型的影响程度。于是C越大,优化时越关注错分问题。反之越关注能否产生一个较大间隔的超平面。

开始使用

【OpenCV2.4】SVM处理线性不可分的例子

#include 
#include 
#include 
#include #define NTRAINING_SAMPLES   100         // 每类训练样本的数量
#define FRAC_LINEAR_SEP     0.9f        // 线性可分部分的样本组成比例

using namespace cv;
using namespace std;

int main(){
    // 用于显示的数据
    const int WIDTH = 512, HEIGHT = 512;
    Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);

    /* 1. 随即产生训练数据 */
    Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
    Mat labels   (2*NTRAINING_SAMPLES, 1, CV_32FC1);
    
    RNG rng(100); // 生成随即数

    // 设置线性可分的训练数据
    int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);

    // 生成分类1的随机点
    Mat trainClass = trainData.rowRange(0, nLinearSamples);
    // 点的x坐标在[0, 0.4)之间
    Mat c = trainClass.colRange(0, 1);
    rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
    // 点的y坐标在[0, 1)之间
    c = trainClass.colRange(1,2);
    rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));

    // 生成分类2的随机点
    trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
    // 点的x坐标在[0.6, 1]之间
    c = trainClass.colRange(0 , 1); 
    rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
    // 点的y坐标在[0, 1)之间
    c = trainClass.colRange(1,2);
    rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));

    /* 设置非线性可分的训练数据 */

    // 生成分类1和分类2的随机点
    trainClass = trainData.rowRange(  nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
    // 点的x坐标在[0.4, 0.6)之间
    c = trainClass.colRange(0,1);
    rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH)); 
    // 点的y坐标在[0, 1)之间
    c = trainClass.colRange(1,2);
    rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
    
    /**/
    labels.rowRange(                0,   NTRAINING_SAMPLES).setTo(1);  // Class 1
    labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2);  // Class 2

    /* 设置支持向量机参数 */
    CvSVMParams params;
    params.svm_type    = SVM::C_SVC;
    params.C           = 0.1;
    params.kernel_type = SVM::LINEAR;
    params.term_crit   = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);

    /* 3. 训练支持向量机 */
    cout "