Python 马氏距离求取函数详解
程序员文章站
2022-03-10 08:13:36
马氏距离区别于欧式距离,如百度知道中所言:马氏距离(mahalanobis distance)是由印度统计学家马哈拉诺比斯(p. c. mahalanobis)提出的,表示点与一个分布之间的距离。它是...
马氏距离区别于欧式距离,如百度知道中所言:
马氏距离(mahalanobis distance)是由印度统计学家马哈拉诺比斯(p. c. mahalanobis)提出的,表示点与一个分布之间的距离。它是一种有效的计算两个未知样本集的相似度的方法。与 欧氏距离不同的是,它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的),并且是尺度无关的(scale-invariant),即独立于测量尺度。对于一个均值为μ, 协方差矩阵为σ的多变量向量,其马氏距离为sqrt( (x-μ)'σ^(-1)(x-μ) )。
因此,对于马氏距离最终的定义式为:
上代码,将马氏距离求取式,封装为python函数,拷贝即可使用:
from numpy import * import numpy def get_mahalanobis(x, i, j): xt = x.t # 求转置 d = numpy.cov(xt) # 求协方差矩阵 invd = numpy.linalg.inv(d) # 协方差逆矩阵 assert 0 <= i < x.shape[0], "点 1 索引超出样本范围。" assert -1 <= j < x.shape[0], "点 2 索引超出样本范围。" x_a = x[i] x_b = x.mean(axis=0) if j == -1 else x[j] tp = x_a - x_b return numpy.sqrt(dot(dot(tp, invd), tp.t))
使用方式如下:
if __name__ == '__main__': # 初始化数据点集,或者从其它地方加载 x = numpy.array([[3, 4], [5, 6], [2, 2], [8, 4]]) # 求第0个点到均值之间的马氏距离(j为-1时代表均值) print(get_mahalanobis(x, 0, -1)) # 求第0个点到第1个点之间的马氏距离 print(get_mahalanobis(x, 0, 1)) # 求第2个点到第3个点之间的马氏距离(索引从0开始算起) print(get_mahalanobis(x, 2, 3))
运行结果贴图
总结
本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注的更多内容!
上一篇: python 中yaml文件用法大全