欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

关于Excel,你一定用的到的36个Python函数

程序员文章站 2022-06-06 08:11:54
...

从Excel到Python:最常用的36个Pandas函数
关于Excel,你一定用的到的36个Python函数

本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入、数据清洗、预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作。

生成数据表

常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据。

 

 

Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。

关于Excel,你一定用的到的36个Python函数

Python支持从多种类型的数据导入。在开始使用Python进行数据导入前需要先导入numpy和pandas库

import numpy as np
import pandas as pd

导入外部数据

df=pd.DataFrame(pd.read_csv('name.csv',header=1))
df=pd.DataFrame(pd.read_Excel('name.xlsx'))c

里面有很多可选参数设置,例如列名称、索引列、数据格式等

直接写入数据

df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
"date":pd.date_range('20130102', periods=6),
"city":['Beijing ', 'SH', ' guangzhou ', 'Shen
zhen', 'shanghai', 'BEIJING '],
"age":[23,44,54,32,34,32],
"category":['100-A','100-B','110-A','110-C','2
10-A','130-F'],
"price":[1200,np.nan,2133,5433,np.nan,4432]},
columns =['id','date','city','category','age',
'price'])

关于Excel,你一定用的到的36个Python函数

数据表检查

数据表检查的目的是了解数据表的整体情况,获得数据表的关键信息、数据的概况,例如整个数据表的大小、所占空间、数据格式、是否有 空值和重复项和具体的数据内容,为后面的清洗和预处理做好准备。

1.数据维度(行列)

Excel中可以通过CTRL+向下的光标键,和CTRL+向右的光标键 来查看行号和列号。Python中使用shape函数来查看数据表的维度,也就是行数和列数。

df.shape

2.数据表信息

使用info函数查看数据表的整体信息,包括数据维度、列名称、数据格式和所占空间等信息。#数据表信息

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 6 columns):
id 6 non-null int64
date 6 non-null datetime64[ns]
city 6 non-null object
category 6 non-null object
age 6 non-null int64
price 4 non-null float64
dtypes: datetime64[ns](1), float64(1), int64(2), object(2)
memory usage: 368.0+ bytes

3.查看数据格式

Excel中通过选中单元格并查看开始菜单中的数值类型来判断数 据的格式。Python中使用dtypes函数来返回数据格式。

关于Excel,你一定用的到的36个Python函数

Dtypes是一个查看数据格式的函数,可以一次性查看数据表中所 有数据的格式,也可以指定一列来单独查看

#查看数据表各列格式
df.dtypes
id int64
date datetime64[ns]
city object
category object
age int64
price float64
dtype: object
#查看单列格式
df['B'].dtype
dtype('int64')

4.查看空值

Excel中查看空值的方法是使用“定位条件”在“开始”目录下的“查找和选择”目录.

关于Excel,你一定用的到的36个Python函数

Isnull是Python中检验空值的函数

#检查数据空值
df.isnull()

关于Excel,你一定用的到的36个Python函数

#检查特定列空值
df['price'].isnull()

关于Excel,你一定用的到的36个Python函数

5.查看唯一值

Excel中查看唯一值的方法是使用“条件格式”对唯一值进行颜色 标记。

关于Excel,你一定用的到的36个Python函数

Python中使用unique函数查看唯一值。

#查看city列中的唯一值
df['city'].unique()
array(['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', '
BEIJING '], dtype=object)

6.查看数据表数值

Python中的Values函数用来查看数据表中的数值

#查看数据表的值
df.values

关于Excel,你一定用的到的36个Python函数

7.查看列名称

Colums函数用来单独查看数据表中的列名称。

#查看列名称
df.columns
Index(['id', 'date', 'city', 'category', 'age', 'price'], dtype='
object')

8.查看前10行数据

Head函数用来查看数据表中的前N行数据

#查看前3行数据
df.head(3)

9.查看后10行数据

Tail行数与head函数相反,用来查看数据表中后N行的数据

#查看最后3行
df.tail(3)

数据表清洗

本章介绍对数据表中的问题进行清洗,包括对空值、大小写问题、数据格式和重复值的处理。

1.处理空值(删除或填充)

Excel中可以通过“查找和替换”功能对空值进行处理

关于Excel,你一定用的到的36个Python函数

Python中处理空值的方法比较灵活,可以使用 Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。

#删除数据表中含有空值的行
df.dropna(how='any')

关于Excel,你一定用的到的36个Python函数

也可以使用数字对空值进行填充

#使用数字0填充数据表中空值
df.fillna(value=0)

使用price列的均值来填充NA字段,同样使用fillna函数,在要填充的数值中使用mean函数先计算price列当前的均值,然后使用这个均值对NA进行填充。

#使用price均值对NA进行填充
df['price'].fillna(df['price'].mean())
Out[8]:
0    1200.0
1    3299.5
2    2133.0
3    5433.0
4    3299.5
5    4432.0
Name: price, dtype: float64

关于Excel,你一定用的到的36个Python函数

2.清理空格

字符中的空格也是数据清洗中一个常见的问题

#清除city字段中的字符空格
df['city']=df['city'].map(str.strip)

3.大小写转换

在英文字段中,字母的大小写不统一也是一个常见的问题。Excel中有UPPER,LOWER等函数,Python中也有同名函数用来解决 大小写的问题。

#city列大小写转换
df['city']=df['city'].str.lower()

关于Excel,你一定用的到的36个Python函数

4.更改数据格式

Excel中通过“设置单元格格式”功能可以修改数据格式。

关于Excel,你一定用的到的36个Python函数

Python中通过astype函数用来修改数据格式。

#更改数据格式
df['price'].astype('int')
0 1200
1 3299
2 2133
3 5433
4 3299
5 4432
Name: price, dtype: int32
相关标签: python