欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

MySQL 以及 Python 实现排行窗口函数

程序员文章站 2022-06-05 18:29:20
...

MySQL 以及 Python 实现排名窗口函数 大部分数据库都提供了窗口函数,比如RANK,ROW_NUMBER等等。 MySQL 这方面没有直接提供,但是可以变相的实现,我以前写了row_number 的实现,今天有时间把 rank 的实现贴出来。 这里,我用MySQL 以及Python 分别实现了rank

MySQL 以及 Python 实现排名窗口函数
大部分数据库都提供了窗口函数,比如RANK,ROW_NUMBER等等。 MySQL 这方面没有直接提供,但是可以变相的实现,我以前写了row_number 的实现,今天有时间把 rank 的实现贴出来。

这里,我用MySQL 以及Python 分别实现了rank 窗口函数。
原始表信息:
t_girl=# \d group_concat;
           Table "ytt.group_concat"
  Column  |         Type          | Modifiers 
----------+-----------------------+-----------
 rank     | integer               | 
 username | character varying(20) | 


表数据
t_girl=# select * from group_concat;
 rank | username 
------+----------
  100 | Lucy
  127 | Lucy
  146 | Lucy
  137 | Lucy
  104 | Lucy
  121 | Lucy
  136 | Lily
  100 | Lily
  100 | Lily
  105 | Lily
  136 | Lily
  149 | ytt
  116 | ytt
  116 | ytt
  149 | ytt
  106 | ytt
  117 | ytt
(17 rows)


Time: 0.638 ms



PostgreSQL 的rank 窗口函数示例:
t_girl=# select username,rank,rank() over(partition by username order by rank desc) as rank_cnt from group_concat;          
 username | rank | rank_cnt 
----------+------+----------
 Lily     |  136 |        1
 Lily     |  136 |        1
 Lily     |  105 |        3
 Lily     |  100 |        4
 Lily     |  100 |        4
 Lucy     |  146 |        1
 Lucy     |  137 |        2
 Lucy     |  127 |        3
 Lucy     |  121 |        4
 Lucy     |  104 |        5
 Lucy     |  100 |        6
 ytt      |  149 |        1
 ytt      |  149 |        1
 ytt      |  117 |        3
 ytt      |  116 |        4
 ytt      |  116 |        4
 ytt      |  106 |        6
(17 rows)


Time: 131.150 ms


MySQL 提供了group_concat 聚合函数可以变相的实现:
mysql> 
select a.username, a.rank, find_in_set(a.rank,b.rank_gp) as rank_cnt 
from group_concat as a ,
(select username,group_concat(rank order by rank desc separator ',')  as rank_gp from group_concat group by username 
) b 
where a.username = b.username order by a.username asc,a.rank desc;
+----------+------+----------+
| username | rank | rank_cnt |
+----------+------+----------+
| Lily     |  136 |        1 |
| Lily     |  136 |        1 |
| Lily     |  105 |        3 |
| Lily     |  100 |        4 |
| Lily     |  100 |        4 |
| Lucy     |  146 |        1 |
| Lucy     |  137 |        2 |
| Lucy     |  127 |        3 |
| Lucy     |  121 |        4 |
| Lucy     |  104 |        5 |
| Lucy     |  100 |        6 |
| ytt      |  149 |        1 |
| ytt      |  149 |        1 |
| ytt      |  117 |        3 |
| ytt      |  116 |        4 |
| ytt      |  116 |        4 |
| ytt      |  106 |        6 |
+----------+------+----------+
17 rows in set (0.02 sec)




当然了,如果MySQL SQL不太熟悉,可以用程序来处理,比如我下面用python 实现了rank 函数,执行结果如下:(脚本源代码最后)


>>> ================================ RESTART ================================
>>> 
 username |   rank   | rank_cnt 
--------------------------------
ytt       |149       |1         
ytt       |149       |1         
ytt       |117       |3         
ytt       |116       |4         
ytt       |116       |4         
ytt       |106       |6         
Lucy      |146       |1         
Lucy      |137       |2         
Lucy      |127       |3         
Lucy      |121       |4         
Lucy      |104       |5         
Lucy      |100       |6         
Lily      |136       |1         
Lily      |136       |2         
Lily      |105       |3         
Lily      |100       |4         
Lily      |100       |4         
(17 Rows.)
Time:     0.162 Seconds.




附上脚本代码:

from __future__ import print_function
from datetime import date, datetime, timedelta
import mysql.connector
import time
# Created by ytt 2014/5/14.
# Rank function implement.
def db_connect(is_true):
    cnx = mysql.connector.connect(host='192.168.1.131',port='3306',user='python_user', password='python_user',database='t_girl',autocommit=is_true)
    return cnx
def db_rs_rank(c1 ='username desc' ,c2 = ' rank desc'):
    # c1: partition column.
    # c2: sort column.
    time_start = time.time()
    cnx = db_connect(True)
    rs = cnx.cursor()
    query0 = "select username,rank from group_concat order by " + c1 + ", " + c2
    rs.execute(query0,multi=False)
    if rs.with_rows:
        rows = rs.fetchall()
    else:
        return "No rows affected."
    i = 0
    j = 0
    k = 1
    result = []
    field1_compare = rows[0][0]
    field2_compare = rows[0][1]
    while i