CodeForces - 1312D Count the Arrays (组合数,方案数)
程序员文章站
2022-06-05 13:42:04
...
然后套上逆元计算组合数和快速幂就行了
const int MOD = 998244353;
ll fac[MAXN];
void init()
{
fac[0] = 1;
for (ll i = 1; i < MAXN; i++) fac[i] = fac[i - 1] * i % MOD;
}
ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b)
{
x = 1,y = 0;
return a;
}
ll d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
ll inv(ll a, ll n)
{
ll x, y;
exgcd(a, n, x, y);
return (x + n) % n;
}
ll C(ll n, ll m){return fac[n] * inv(fac[m] * fac[n - m] % MOD, MOD) % MOD;}
ll qpow(ll a,ll b)//a^b//快速幂
{
if(b==0) return 1;
a%=MOD;
ll ans=1,temp=a;
while(b)
{
if(b&1) ans=(ans*temp)%MOD;
temp=(temp*temp)%MOD;
b>>=1;
}
return ans%MOD;
}
void solve()
{
init();
ll n,m;cin>>n>>m;
if(n==2) cout<<0<<endl;
else cout<<((C(m,n-1)%MOD)*(n-2)%MOD)*(qpow(2,n-3)%MOD)%MOD<<endl;
}