欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

二叉堆

程序员文章站 2022-06-05 12:39:09
...

参考:二叉堆

堆的定义

堆(heap),这里所说的堆是数据结构中的堆,而不是内存模型中的堆。堆通常是一个可以被看做一棵树,它满足下列性质:
[性质一] 堆中任意节点的值总是不大于(不小于)其子节点的值;
[性质二] 堆总是一棵完全树。
将任意节点不大于其子节点的堆叫做最小堆或小根堆,而将任意节点不小于其子节点的堆叫做最大堆或大根堆。常见的堆有二叉堆、左倾堆、斜堆、二项堆、斐波那契堆等等。

二叉堆的定义

二叉堆是完全二元树或者是近似完全二元树,它分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。

示意图如下:
二叉堆

实现细节

二叉堆一般都通过”数组”来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将”二叉堆的第一个元素”放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),只是实现上稍微有一丁点区别。

性质

假设”第一个元素”在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i+1);
(02) 索引为i的右孩子的索引是 (2*i+2);
(03) 索引为i的父结点的索引是 floor((i-1)/2);
假设”第一个元素”在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i);
(02) 索引为i的右孩子的索引是 (2*i+1);
(03) 索引为i的父结点的索引是 floor(i/2);

在前面,我们已经了解到:”最大堆”和”最小堆”是对称关系。这也意味着,了解其中之一即可。本节的图文解析是以”最大堆”来进行介绍的。

二叉堆的核心是”添加节点”和”删除节点”,理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍。

1. 添加

假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:
二叉堆
如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。

/*
 * 最大堆的向上调整算法(从start开始向上直到0,调整堆)
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
void maxheap_filterup(int start)
{
    int cur = start;            // 当前节点(current)的位置
    int parent = (cur - 1 )/2;        // 父(parent)结点的位置 
    int value = m_heap[cur];        // 当前节点(current)的大小

    while(cur > 0 && m_heap[parent] < value)
    {
        // 父结点移动到子结点
        m_heap[cur] = m_heap[parent];
        // 跳到父结点的下标
        cur = parent;
        // 获得当前节点的父结点
        parent = (parent-1)/2;   

    }
    // 插到指定的位置
    m_heap[cur] = value;
}

/* 
 * 将data插入到二叉堆中
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
int maxheap_insert(int data)
{
    // 如果"堆"已满,则返回
    if(m_size == m_capacity)
        return -1;

    m_heap[m_size] = data;        // 将"数组"插在表尾
    maxheap_filterup(m_size);    // 向上调整堆
    m_size++;                    // 堆的实际容量+1

    return 0;
}

maxheap_insert(data)的作用:将数据data添加到最大堆中。
当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。

2. 删除

假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:

二叉堆
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。

注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的子节点来替换;而必须考虑到”替换后的树仍然要是最大堆”!

二叉堆

/* 
 * 返回data在二叉堆中的索引
 *
 * 返回值:
 *     存在 -- 返回data在数组中的索引
 *     不存在 -- -1
 */
int get_index(int data)
{
    int i=0;

    for(i=0; i<m_size; i++)
        if (data==m_heap[i])
            return i;

    return -1;
}

/* 
 * 最大堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
void maxheap_filterdown(int start, int end)
{
    int cur = start;          // 当前(current)节点的位置
    int left = 2 * cur + 1;     // 左(left)孩子的位置
    int value = m_heap[cur];    // 当前(current)节点的大小

    while(left <= end)
    {
        // "left"是左孩子,"left+1"是右孩子
        if(left < end && m_heap[left] < m_heap[left + 1])
            left++;        // 左右两孩子中选择较大者,即m_heap[left+1]
        if(value >= m_heap[left])
            break;        //调整结束
        else
        {
            m_heap[cur] = m_heap[left];
            cur = left;
            left = 2 * left + 1;   
        }       
    }   
    m_heap[cur] = value;
}

/*
 * 删除最大堆中的data
 *
 * 返回值:
 *      0,成功
 *     -1,失败
 */
int maxheap_remove(int data)
{
    int index;
    // 如果"堆"已空,则返回-1
    if(m_size == 0)
        return -1;

    // 获取data在数组中的索引
    index = get_index(data); 
    if (index==-1)
        return -1;

    m_heap[index] = m_heap[--m_size];        // 用最后元素填补
    maxheap_filterdown(index, m_size-1);    // 从index位置开始自上向下调整为最大堆

    return 0;
}

maxheap_remove(data)的作用:从最大堆中删除数据data。
当堆已经为空的时候,删除失败;否则查处data在最大堆数组中的位置。找到之后,先用最后的元素来替换被删除元素;然后通过下调算法重新调整数组,使之重新成为最大堆。

最终代码

/**
 * 二叉堆(最大堆)
 *
 * @author skywang
 * @date 2014/03/07
 */

#include <iostream>
#include <cstdio>
using namespace std;
const int MAX = 100000;

int n;

static int m_heap[100000];        // 数据
static int m_capacity=100000;    // 总的容量
static int m_size=0;        // 实际容量(初始化为0)

/* 
 * 返回data在二叉堆中的索引
 *
 * 返回值:
 *     存在 -- 返回data在数组中的索引
 *     不存在 -- -1
 */
int get_index(int data)
{
    int i=0;

    for(i=0; i<m_size; i++)
        if (data==m_heap[i])
            return i;

    return -1;
}

/* 
 * 最大堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
void maxheap_filterdown(int start, int end)
{
    int cur = start;          // 当前(current)节点的位置
    int left = 2 * cur + 1;     // 左(left)孩子的位置
    int value = m_heap[cur];    // 当前(current)节点的大小

    while(left <= end)
    {
        // "left"是左孩子,"left+1"是右孩子
        if(left < end && m_heap[left] < m_heap[left + 1])
            left++;        // 左右两孩子中选择较大者,即m_heap[left+1]
        if(value >= m_heap[left])
            break;        //调整结束
        else
        {
            m_heap[cur] = m_heap[left];
            cur = left;
            left = 2 * left + 1;   
        }       
    }   
    m_heap[cur] = value;
}

/*
 * 删除最大堆中的data
 *
 * 返回值:
 *      0,成功
 *     -1,失败
 */
int maxheap_remove(int data)
{
    int index;
    // 如果"堆"已空,则返回-1
    if(m_size == 0)
        return -1;

    // 获取data在数组中的索引
    index = get_index(data); 
    if (index==-1)
        return -1;

    m_heap[index] = m_heap[--m_size];        // 用最后元素填补
    maxheap_filterdown(index, m_size-1);    // 从index位置开始自上向下调整为最大堆

    return 0;
}

/*
 * 最大堆的向上调整算法(从start开始向上直到0,调整堆)
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
void maxheap_filterup(int start)
{
    int cur = start;            // 当前节点(current)的位置
    int parent = (cur - 1 )/2;        // 父(parent)结点的位置 
    int value = m_heap[cur];        // 当前节点(current)的大小

    while(cur > 0 && m_heap[parent] < value)
    {
        // 父结点移动到子结点
        m_heap[cur] = m_heap[parent];
        // 跳到父结点的下标
        cur = parent;
        // 获得当前节点的父结点
        parent = (parent-1)/2;   

    }
    // 插到指定的位置
    m_heap[cur] = value;
}

/* 
 * 将data插入到二叉堆中
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
int maxheap_insert(int data)
{
    // 如果"堆"已满,则返回
    if(m_size == m_capacity)
        return -1;

    m_heap[m_size] = data;        // 将"数组"插在表尾
    maxheap_filterup(m_size);    // 向上调整堆
    m_size++;                    // 堆的实际容量+1

    return 0;
}

/* 
 * 打印二叉堆
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
void maxheap_print()
{
    int i;
    for (i=0; i<m_size; i++)
        printf("%d ", m_heap[i]);
}

int main()
{
    int Array[MAX];
    int i;
    scanf("%d", &n);
    for(i=0; i<n; i++)
    {
        scanf("%d", &Array[i]);
        maxheap_insert(Array[i]);
    }

    printf("== 最 大 堆: ");
    maxheap_print();

    i=85;
    maxheap_insert(i);
    printf("\n== 添加元素: %d", i);
    printf("\n== 最 大 堆: ");
    maxheap_print();

    i=90;
    maxheap_remove(i);
    printf("\n== 删除元素: %d", i);
    printf("\n== 最 大 堆: ");
    maxheap_print();
    printf("\n");
    return 0;
}
相关标签: 二叉堆