对称加密算法——DES算法(python实现)
一、DES算法描述
DES算法总的说来可以两部分组成:
1、对**的处理。这一部分是把我们用的64位**(实际用的56位,去掉了8个奇偶校验位)分散成16个48位的子**。
2、对数据的加密。通过第一步生成的子**来加密我们所要加密的数据,最终生成密文。
下面就通过这两部分分别介绍DES算法的实现原理。
1.**分散——子**的生成
64比特的**生成16个48比特的子**。其生成过程见图:
64比特的**K,经过PC-1后,生成56比特的串。其下标如表所示:
该比特串分为长度相等的比特串C0和D0(分别为28比特)。然后C0和D0分别循环左移1位,得到C1和D1。C1和D1合并起来生成C1D1。C1D1经过PC-2变换后即生成48比特的K1。K1的下标列表为:
C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子**K2……依次类推直至生成子**K16。
注意:Lsi (I =1,2,….16)的数值是不同的。具体见下表:
注:PC-1 和 PC-2是**的指定为置换。
至此,我们已成功的生成了16个48位的子**。
2.加密流程图
DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64(mi=0或1)。明文串经过64比特的**K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:
3. DES算法加密过程
对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换后,得到的比特串的下标列表如下:
该比特串被分为32位的L0和32位的R0两部分。R0子**K1经过变换f(R0,K1)(f变换算法见下)输出32位的比特串f1,f1与L0做异或运算。
f1 与L0做异或运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2…… 一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。
R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1后所得比特串的下标列表如下:
经过置换IP-1后生成的比特串就是密文e.。
f 算法
变换f(Ri-1,Ki)的功能是将32比特的输入再转化为32比特的输出。其过程如图所示:
首先、输入Ri-1(32比特)经过变换E后,膨胀为48比特。膨胀后的比特串的下标列表如下:
其次、膨胀后的E和Ki异或的结果分为8组,每组6比特。各组经过各自的S盒后,变为4比特,
S盒的算法为:输入b1,b2,b3,b4,b5,b6,计算x=b1*2+b6,y=b5+b4*2+b3*4+b2*8,再从Si表(见下表)中查出x 行,y 列的值Sxy。将Sxy化为二进制,即得Si盒的输出。
最后、合并8组S盒输出成为32比特。该32比特经过P变换后,其下标列表如下:
经过P变换后输出的比特串才是32比特的f (Ri-1,Ki)。
以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子**K16,第二次K15、......,最后一次用K1,算法本身并没有任何变化。
二、目前使用的DES算法
对于服务端apache,里面描述的DES加解密,只是最基本、最原始的加解密,而现在很多地方使用的DES都会有一些扩展。
接来说下我们目前使用的DES的加解密的使用。
函数des3_set_3keys设置key,如果是3DES,则需要设置3个key,这里说的key其实就是8字节的数组类型的**;
而 函数des3_encrypt是处理的加密,void des3_encrypt( des3_context *ctx, uint8 input[8], uint8output[8] ),其中的input和output分别表示需要加密的和加密后的数据。这里提供的是8个字节的数据,如果要加密的数据比8个字节要长,则需要循环使用这 个加密函数;而输出output,每次调用des3_encrypt,输出都是8位。比如说,需要加密的数据是个10字节长的数,那么加完密之后则是16 位。
三、DES算法的两种模式
上面描述的只是是最基本的DES加密,而通常外界使用的DES很多都有模式以及填充方式的设置,如果设置不一样,将会导致一些接口信息不一致,加解密的数据就对不上。
比较常用的模式有:cbc和ecb。
这里主要介绍DES算法的数据补位问题、DES算法的两种模式ECB和CBC问题,以及更加安全的算法3DES。
1、数据补位
DES数据加解密就是将数据按照8个字节一段进行DES加密或解密得到一段8个字节的密文或者明文,最后一段不足8个字节,按照需求补足8个字节(通常补00或者FF,根据实际要求不同)进行计算,之后按照顺序将计算所得的数据连在一起即可。
很多地方默认的补位方式是以PKCS7补位的,如果C#默认的就是PKCS7补位:补位补到8位的整数倍,差几位补几。
这里有个问题就是为什么要进行数据补位?主要原因是DES算法加解密时要求数据必须为8个字节。
2、ECB模式
DES ECB(电子密本方式)其实非常简单,就是将数据按照8个字节一段进行DES加密或解密得到一段8个字节的密文或者明文,最后一段不足8个字节,按照需求补足8个字节进行计算,之后按照顺序将计算所得的数据连在一起即可,各段数据之间互不影响。
3、CBC模式
DES CBC(密文分组链接方式)有点麻烦,它的实现机制使加密的各段数据之间有了联系。其实现的机理如下:
加密步骤如下:
1)首先将数据按照8个字节一组进行分组得到D1D2......Dn(若数据不是8的整数倍,用指定的PADDING数据补位)
2)第一组数据D1与初始化向量I异或后的结果进行DES加密得到第一组密文C1(初始化向量I为全零)
3)第二组数据D2与第一组的加密结果C1异或以后的结果进行DES加密,得到第二组密文C2
4)之后的数据以此类推,得到Cn
5)按顺序连为C1C2C3......Cn即为加密结果。
解密是加密的逆过程,步骤如下:
1)首先将数据按照8个字节一组进行分组得到C1C2C3......Cn
2)将第一组数据进行解密后与初始化向量I进行异或得到第一组明文D1(注意:一定是先解密再异或)
3)将第二组数据C2进行解密后与第一组密文数据进行异或得到第二组数据D2
4)之后依此类推,得到Dn
5)按顺序连为D1D2D3......Dn即为解密结果。
python实现:
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# 2014/10/16 wrote by yangyongzhen
# QQ:534117529
# global definition
# base = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]
__author__ = 'YangYongZhen'
base = [str(x) for x in range(10)] + [ chr(x) for x in range(ord('A'),ord('A')+6)]
# bin2dec
# 二进制 to 十进制: int(str,n=10)
def bin2dec(string_num):
return str(int(string_num, 2))
# hex2dec
# 十六进制 to 十进制
def hex2dec(string_num):
return str(int(string_num.upper(), 16))
# dec2bin
# 十进制 to 二进制: bin()
def dec2bin(string_num):
num = int(string_num)
mid = []
while True:
if num == 0: break
num,rem = divmod(num, 2)
mid.append(base[rem])
return ''.join([str(x) for x in mid[::-1]])
# dec2hex
# 十进制 to 八进制: oct()
# 十进制 to 十六进制: hex()
def dec2hex(string_num):
num = int(string_num)
if num==0:
return '0'
mid = []
while True:
if num == 0: break
num,rem = divmod(num, 16)
mid.append(base[rem])
return ''.join([str(x) for x in mid[::-1]])
# hex2tobin
# 十六进制 to 二进制: bin(int(str,16))
def hex2bin(string_num):
return dec2bin(hex2dec(string_num.upper()))
# bin2hex
# 二进制 to 十六进制: hex(int(str,2))
def bin2hex(string_num):
return dec2hex(bin2dec(string_num))
'''
/**
* PBOC3DES 加密算法
* @author Administrator
*
*/
'''
class PBOC_DES():
pass
'''
/** ***************************压缩替换S-Box************************************************* */
'''
subKey = [([0] * 48) for ll in range(16)]
s1 = [
[ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 ],
[ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 ],
[ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 ],
[ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 ] ]
s2 = [
[ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 ],
[ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 ],
[ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 ],
[ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 ] ]
s3 = [
[ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 ],
[ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 ],
[ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 ],
[ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 ] ]
s4 = [
[ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 ],
[ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 ],
[ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 ],
[ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 ] ]
s5 = [
[ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 ],
[ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 ],
[ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 ],
[ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 ] ]
s6 = [
[ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 ],
[ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 ],
[ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 ],
[ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 ] ]
s7 = [
[ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 ],
[ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 ],
[ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 ],
[ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 ] ]
s8 = [
[ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 ],
[ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 ],
[ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 ],
[ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 ] ]
ip = [ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 ]
_ip = [ 40, 8, 48, 16, 56, 24, 64, 32, 39, 7,47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45,13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11,51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 ]
# 每次**循环左移位数
LS = [ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2,2, 1 ]
'''
/**
* IP初始置换
* @param source
* @return
*/
'''
def changeIP(source):
dest= [0]*64
global ip
for i in range(64):
dest[i] = source[ip[i] - 1]
return dest
def string2Binary(str):
le = len(str)
dest =[0]*le*4
i = 0
for c in str:
i += 4
j = 0
s = hex2bin(c)
l = len(s)
for d in s:
dest[i-l+j]=int(d)
j += 1
return dest
'''
/**
* IP-1逆置
* @param source
* @return
*/
'''
def changeInverseIP(source):
dest = [0]*64
global _ip
for i in range(64):
dest[i] = source[_ip[i] - 1]
return dest
'''
/**
*
* 获取***(48bit)
*
* @param source
*
* @return
*
*/
'''
def setKey(source):
global subKey
# 装换4bit
temp = string2Binary(source)
# 6bit均分成两部分
left = [0]*28
right = [0]*28
# 经过PC-14bit转换6bit
temp1 = [0]*56
temp1 = keyPC_1(temp)
# printArr(temp1);
#将经过转换的temp1均分成两部分
for i in range(28):
left[i] = temp1[i]
right[i] = temp1[i + 28]
# 经过16次循环左移,然后PC-2置换
for i in range(16):
left = keyLeftMove(left, LS[i])
right = keyLeftMove(right, LS[i])
for j in range(28):
temp1[j] = left[j]
temp1[j + 28] = right[j]
subKey[i] = keyPC_2(temp1)
'''
/**
*
* 6bit的**转换成48bit
* @param source
* @return
*
*/
'''
def keyPC_2(source):
dest = [0]*48
temp = [ 14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32 ]
for i in range(48):
dest[i] = source[temp[i] - 1]
return dest
'''
/**
*
* 将**循环左移i
* @param source 二进制**数
* @param i 循环左移位数
* @return
*
*/
'''
def keyLeftMove( source, i):
temp = 0
global LS
le = len(source)
ls = LS[i]
for k in range(ls):
temp = source[0]
for j in range(le-1):
source[j] = source[j + 1]
source[le - 1] = temp
return source
'''
/**
*
* 4bit的**转换成56bit
* @param source
* @return
*
*/
'''
def keyPC_1(source):
dest = [0]*56
temp = [ 57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4 ]
for i in range(56):
dest[i] = source[temp[i] - 1]
return dest
'''
/**
* 两个等长的数组做异或
* @param source1
* @param source2
* @return
*/
'''
def diffOr( source1, source2):
le = len(source1)
dest = [0]*le
for i in range(le):
dest[i] = source1[i] ^ source2[i]
return dest
'''
/**
*
* DES加密--->对称**
* D = Ln(32bit)+Rn(32bit)
* 经过16轮置
* @param D(16byte)明文
* @param K(16byte)***
* @return (16byte)密文
*/
'''
def encryption( D, K) :
temp = [0]*64;
data = string2Binary(D)
# 第一步初始置
data = changeIP(data)
left = [([0] * 32) for i in range(17)]
right = [([0] * 32) for i in range(17)]
for j in range(32):
left[0][j] = data[j]
right[0][j] = data[j + 32]
setKey(K)# sub key ok
for i in range(1,17):
# 获取(48bit)的*密
key = subKey[i - 1]
# L1 = R0
left[i] = right[i - 1]
# R1 = L0 ^ f(R0,K1)
fTemp = f(right[i - 1], key)# 32bit
right[i] = diffOr(left[i - 1], fTemp)
#组合的时候,左右调换
for i in range(32):
temp[i] = right[16][i]
temp[32 + i] = left[16][i]
temp = changeInverseIP(temp)
str = binary2ASC(intArr2Str(temp))
return str
'''
/**
* 8bit压缩2bit
* @param source(48bit)
* @return R(32bit) B=E(R)⊕K,将48 位的B 分成8 个分组,B=B1B2B3B4B5B6B7B8
*/
'''
def press(source) :
ret = [0]*32
temp = [([0] * 6) for i in range(8)]
s =[s1,s2,s3,s4,s5,s6,s7,s8]
st=[]
for i in range(8):
for j in range(6):
temp[i][j] = source[i * 6 + j]
for i in range(8):
# (16)
x = temp[i][0] * 2 + temp[i][5]
# (2345)
y = temp[i][1] * 8 + temp[i][2] * 4 + temp[i][3] * 2+ temp[i][4]
val = s[i][x][y]
ch = dec2hex(str(val))
# System.out.println("x=" + x + ",y=" + y + "-->" + ch);
# String ch = Integer.toBinaryString(val);
st.append(ch)
# System.out.println(str.toString());
ret = string2Binary(st)
# printArr(ret);
# 置换P
ret = dataP(ret)
return ret
'''
/**
* 置换P(32bit)
* @param source
* @return
*/
'''
def dataP( source):
dest = [0]*32
temp = [ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31,
10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 ]
le = len(source)
for i in range(le):
dest[i] = source[temp[i] - 1]
return dest
'''
/**
* 2bit扩展8bit
* @param source
* @return
*/
'''
def expend(source):
ret = [0]*48
temp = [ 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12,
13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22,
23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 ]
for i in range(48):
ret[i] = source[temp[i] - 1]
return ret
'''
/**
* @param R(2bit)
* @param K(48bit的*密
* @return 32bit
*/
'''
def f( R, K):
dest = [0]*32
temp = [0]*48
# 先将输入32bit扩展8bit
expendR = expend(R)# 48bit
# 与***进行异或运
temp = diffOr(expendR, K);
# 压缩2bit
dest = press(temp)
return dest
'''
/**
* 将int类型数组拼接成字符串
* @param arr
* @return
*/
'''
def intArr2Str( arr) :
sb = []
le=len(arr)
for i in range(le):
sb.append(str(arr[i]))
return ''.join(sb)
'''
/**
* 将二进制字符串转换成十六进制字符
* @param s
* @return
*/
'''
def binary2ASC(s):
st = ''
ii = 0
le= len(s)
#不够4bit左补0
if le % 4 != 0:
while ii < (4 - len % 4):
s = "0" + s
le=le/4
for i in range(le):
st += bin2hex(s[i * 4 : i * 4 + 4])
return st
if __name__=="__main__":
D='1111111111111111'
K='FFFFFFFFFFFFFFFF'
print encryption(D,K)
上一篇: 编码、摘要和加密(三)——数据加密
下一篇: DES对称加密算法的简单实现