JDK 7和JDK8中的HashMap的实现原理不同之处,以及JDK8中HashMap的优势之处
程序员文章站
2022-06-04 19:57:56
...
1、JDK8将数据的存储方式,由数组链表形式,优化为当链表长度大于8的时候,链表形式变为红黑树形式,复杂度由O(n)降至O(logn),提高了查询效率,性能得到了提升
2、扩容方式:
JDK7: JDK7会传入一个新的更大的容量,并以此创建一个新的Entry数组,然后重新计算hash值将原来的数组元素,拷贝到新的Entry数组中
// JDK7源码
void resize(int newCapacity) {
//获取原表
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
//以新容量创建一个新的Entry数组
Entry[] newTable = new Entry[newCapacity];
boolean oldAltHashing = useAltHashing;
useAltHashing |= sun.misc.VM.isBooted() &&
(newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
//重新计算hash值
boolean rehash = oldAltHashing ^ useAltHashing;
//根据新的hash值复制数组
transfer(newTable, rehash);
table = newTable;
//重新计算阈值
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
JDK8:
扩容时将长度变为原来的2倍newCap = oldCap << 1;
重新拷贝数组元素时,key<oldTable.length,元素位置不变,如果key > oldTable.length, 元素位置为原来的索引+oldTable.length;
即如果原来的数组长度为16,元素a,key=5,元素b,key=21,那么在原来的数组中应该在同一个链表中;扩容为32时,元素a仍在位置5,而元素b,应在5+16=21的位置上,节省了重新计算hash的时间,提高了效率
// JDK8源码
final Node<K,V>[] resize() {
//获取原表
Node<K,V>[] oldTab = table;
//获取原表长
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//获取原阈值
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//判断原容量是否大于最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
} //否则原容量扩大2倍为新容量
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//阈值扩大两倍
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//建立新表
table = newTab;
if (oldTab != null) {
//遍历原表,将数据存到新表中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)//普通节点
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)//红黑树结构
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
//链表结构
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//hash小于oldCap,小于时,进行与运算值为0
//如二进制oldCap=10000,hash=01101,与运算为0,//否则不为0
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {//hash大于等于oldCap
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
//原索引不变
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
//原索引+原容量
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}