HashMap源码分析基于JDK1.8
HashMap源码分析(基于JDK1.8)
文章目录
1.HashMap概述
HashMap 是一个散列表,它存储的内容是键值对(key-value)映射。看它的定义源码:
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
HashMap 继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。
HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。
HashMap的结构可抽象化数组和链表(树)的结合,数组中每个元素看作一个“桶”,每个桶里是链表的结构,在链表达到一定长度后,转换为树结构;
HashMap 的实例有两个参数影响其性能:“初始容量” 和 “加载因子”。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。
2.HashMap构造函数
以下来源于API:
// 构造一个空的 HashMap ,默认初始容量(16)和默认负载系数(0.75)。
HashMap()
// 构造一个空的 HashMap具有指定的初始容量和默认负载因子(0.75)。
HashMap(int initialCapacity)
// 构造一个空的 HashMap具有指定的初始容量和负载因子。
HashMap(int capacity, float loadFactor)
// 构造一个新的 HashMap与指定的相同的映射 Map
HashMap(Map<? extends K, ? extends V> map)
3.HashMap常用方法
void clear()
Object clone()
boolean containsKey(Object key)
boolean containsValue(Object value)
Set<Entry<K, V>> entrySet()
V get(Object key)
boolean isEmpty()
Set<K> keySet()
V put(K key, V value)
void putAll(Map<? extends K, ? extends V> map)
V remove(Object key)
int size()
Collection<V> values()
4.HashMap源码主要参数介绍
(01) HashMap继承于AbstractMap类,实现了Map接口。Map是"key-value键值对"接口,AbstractMap实现了"键值对"的通用函数接口。
(02) HashMap是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table, size, threshold, loadFactor, modCount。
- table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。 哈希表的"key-value键值对"都是存储在Entry数组中的。
- size是HashMap的大小,它是HashMap保存的键值对的数量。
- threshold是HashMap的阈值,用于判断是否需要调整HashMap的容量。threshold的值=“容量*加载因子”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
- loadFactor就是加载因子。
- modCount是用来实现fail-fast机制的。
在详细介绍HashMap的代码之前,我们需要了解:HashMap就是一个散列表,它是通过“拉链法”解决哈希冲突的。 还需要再补充说明的一点是影响HashMap性能的有两个参数:初始容量(initialCapacity) 和加载因子(loadFactor)。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
5.内部结构详解
1.HashMap桶结构--------数据存储数组
在JDK1.6,JDK1.7中,HashMap采用位桶+链表实现,即使用链表处理冲突, 同一hash值的链表都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,HashMap采用位桶+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。
首先有一个每个元素都是链表(可能表述不准确)的数组,当添加一个元素(key-value)时,就首先计算元素key的hash值,以此确定插入数组中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这时就添加到同一hash值的元素的后面,他们在数组的同一位置,但是形成了链表,同一各链表上的Hash值是相同的,所以说数组存放的是链表。而当链表长度太长时,链表就转换为红黑树,这样大大提高了查找的效率。
HashMap的桶结构就是下面这个定义: 可见table就是一个数组,元素为链表形式
transient Node<K,V>[] table;
下面来看看Node(链表)的定义:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
2.put方法
方法功能:将指定的值与此映射中的指定键相关联。 如果地图先前包含了该键的映射,则替换旧值。
HashMap允许传入null的键值对 ,HashMap以null作为key时,总是存储在table数组的第一个节点上。 ⭐
来到put方法的源码:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
put方法中又调用了putVal方法,主要的实现都在putVal方法中,看一下putVal方法源码:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab;
Node<K,V> p;
int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
/*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
/*表示有冲突,开始处理冲突*/
else {
Node<K,V> e;
K k;
/*检查第一个Node,p是不是要找的值*/
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
/*指针为空就挂在后面*/
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构,
//treeifyBin首先判断当前hashMap的长度,如果不足64,只进行
//resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
/*如果有相同的key值就结束遍历*/
if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
/*就是链表上有相同的key值*/
if (e != null) { // existing mapping for key,就是key的Value存在
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;//返回存在的Value值
}
}
++modCount;
/*如果当前大小大于门限,门限原本是初始容量*0.75*/
if (++size > threshold)
resize();//扩容两倍
afterNodeInsertion(evict);
return null;
}
这是jdk1.8下的源代码,其中的注释是我添上去的,以便于理解;
下面简单说下添加键值对put(key,value)的过程:
1,判断键值对数组tab[]是否为空或为null,否则以默认大小resize();
2,根据键值key计算hash值得到插入的数组索引i,如果tab[i]==null,直接新建节点添加,否则转入3
3,判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理
3.get方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
可以看到又调用了getNode方法,这个方法才是关键,下面来看看这个方法:
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab;//Entry对象数组
Node<K,V> first,e; //在tab数组中经过散列的第一个位置
int n;
K k;
/*找到插入的第一个Node,方法是hash值和n-1相与,tab[(n - 1) & hash]*/
//也就是说在一条链上的hash值相同的
if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {
/*检查第一个Node是不是要找的Node*/
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))//判断条件是hash值要相同,key值要相同
return first;
/*检查first后面的node*/
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
/*遍历后面的链表,找到key值和hash值都相同的Node*/
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
get(key)方法时获取key的hash值,计算hash&(n-1)得到在链表数组中的位置first=tab[hash&(n-1)],先判断first的key是否与参数key相等,不等就遍历后面的链表找到相同的key值返回对应的Value值即可 ;
4.resize()方法 (扩容方法)
我们要知道,当当前桶的数量达到阈值值,就得扩容,扩容操作中会将原有数据重新添加到扩容后得结构中,所以扩容很耗时,是开销得主要来源;
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
/*如果旧表的长度不是空*/
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
/*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
/*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/
newThr = oldThr << 1; // double threshold
}
/*如果旧表的长度的是0,就是说第一次初始化表*/
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;//新表长度乘以加载因子
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
/*下面开始构造新表,初始化表中的数据*/
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;//把新表赋值给table
if (oldTab != null) {//原表不是空要把原表中数据移动到新表中
/*遍历原来的旧表*/
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
/*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/
else { // preserve order保证顺序
////新计算在新表的位置,并进行搬运
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;//记录下一个结点
//新表是旧表的两倍容量,实例上就把单链表拆分为两队,
//e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {//lo队不为null,放在新表原位置
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
上一篇: JDK1.8源码分析:HashMap
下一篇: HashMap源码分析(JDK1.8)