ROS下移动机器人导航仿真
作者:杭州电子科技大学智能机器人实验室
环境:ROS+Kinetic16.04
参考:<<ROS机器人开发实践>>----胡春旭
实验步骤
准备工作
新建一个工作空间(或者已有的workspace),然后在src目录下导入中科大ROS-Academy-for-Beginners包中的robot_sim_demopackage,本实验将采用该模型中的移动机器人作为仿真对象.
搭建仿真环境
使用gazebo搭建仿真环境
gazebo如何进行搭建这里不再赘述,本文参考这篇博客进行了一个简单的地图构建,如下图所示:
构建地图生成的world文件保存在robot_sim_demo下的worlds文件夹下面,如下图第三个文件.
然后对部分文件进行修改:
(1)修改launch文件夹下的robot_spawn.launch文件,主要用我们自己仿真的world环境替换原仿真环境;
<arg name="world_name" value="$(find robot_sim_demo)/worlds/square.world"/>
(2)修改robot_sim_demo/launch/include/xbot-u.launch.xml文件,主要是修改机器人的初始坐标,让其在环境范围之内,我的修改内容如下:
小技巧:建图时可以围绕原点建,这样可直接设置初始点为(0, 0, 0);
建图
(1)安装gmapping
sudo apt-get install ros-kinetic-gmapping
(2)在launch文件夹下新建一个 gmapping.launch
文件,具体内容如下:
<launch>
<arg name="scan_topic" default="scan" />
<node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen" clear_params="true">
<param name="odom_frame" value="odom"/>
<param name="map_update_interval" value="5.0"/>
<!-- Set maxUrange < actual maximum range of the Laser -->
<param name="maxRange" value="5.0"/>
<param name="maxUrange" value="4.5"/>
<param name="sigma" value="0.05"/>
<param name="kernelSize" value="1"/>
<param name="lstep" value="0.05"/>
<param name="astep" value="0.05"/>
<param name="iterations" value="5"/>
<param name="lsigma" value="0.075"/>
<param name="ogain" value="3.0"/>
<param name="lskip" value="0"/>
<param name="srr" value="0.01"/>
<param name="srt" value="0.02"/>
<param name="str" value="0.01"/>
<param name="stt" value="0.02"/>
<param name="linearUpdate" value="0.5"/>
<param name="angularUpdate" value="0.436"/>
<param name="temporalUpdate" value="-1.0"/>
<param name="resampleThreshold" value="0.5"/>
<param name="particles" value="80"/>
<param name="xmin" value="-1.0"/>
<param name="ymin" value="-1.0"/>
<param name="xmax" value="1.0"/>
<param name="ymax" value="1.0"/>
<param name="delta" value="0.05"/>
<param name="llsamplerange" value="0.01"/>
<param name="llsamplestep" value="0.01"/>
<param name="lasamplerange" value="0.005"/>
<param name="lasamplestep" value="0.005"/>
<remap from="scan" to="$(arg scan_topic)"/>
</node>
</launch>
(3)为了控制机器人移动,分别在robot_sim_demo下的launch文件夹下新建mbot_teleop.launch
文件以及在robot_sim_demo下面新建一个scripts文件夹,具体内容如下:
launch文件:mbot_teleop.launch
<launch>
<node name="mbot_teleop" pkg="mbot_teleop" type="mbot_teleop.py" output="screen">
<param name="scale_linear" value="0.1" type="double"/>
<param name="scale_angular" value="0.4" type="double"/>
</node>
</launch>
scripts文件:mbot_teleop.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
from geometry_msgs.msg import Twist
import sys, select, termios, tty
msg = """
Control mbot!
---------------------------
Moving around:
u i o
j k l
m , .
q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop
anything else : stop smoothly
CTRL-C to quit
"""
moveBindings = {
'i':(1,0),
'o':(1,-1),
'j':(0,1),
'l':(0,-1),
'u':(1,1),
',':(-1,0),
'.':(-1,1),
'm':(-1,-1),
}
speedBindings={
'q':(1.1,1.1),
'z':(.9,.9),
'w':(1.1,1),
'x':(.9,1),
'e':(1,1.1),
'c':(1,.9),
}
def getKey():
tty.setraw(sys.stdin.fileno())
rlist, _, _ = select.select([sys.stdin], [], [], 0.1)
if rlist:
key = sys.stdin.read(1)
else:
key = ''
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)
return key
speed = .2
turn = 1
def vels(speed,turn):
return "currently:\tspeed %s\tturn %s " % (speed,turn)
if __name__=="__main__":
settings = termios.tcgetattr(sys.stdin)
rospy.init_node('mbot_teleop')
pub = rospy.Publisher('/cmd_vel', Twist, queue_size=5)
x = 0
th = 0
status = 0
count = 0
acc = 0.1
target_speed = 0
target_turn = 0
control_speed = 0
control_turn = 0
try:
print msg
print vels(speed,turn)
while(1):
key = getKey()
# 运动控制方向键(1:正方向,-1负方向)
if key in moveBindings.keys():
x = moveBindings[key][0]
th = moveBindings[key][1]
count = 0
# 速度修改键
elif key in speedBindings.keys():
speed = speed * speedBindings[key][0] # 线速度增加0.1倍
turn = turn * speedBindings[key][1] # 角速度增加0.1倍
count = 0
print vels(speed,turn)
if (status == 14):
print msg
status = (status + 1) % 15
# 停止键
elif key == ' ' or key == 'k' :
x = 0
th = 0
control_speed = 0
control_turn = 0
else:
count = count + 1
if count > 4:
x = 0
th = 0
if (key == '\x03'):
break
# 目标速度=速度值*方向值
target_speed = speed * x
target_turn = turn * th
# 速度限位,防止速度增减过快
if target_speed > control_speed:
control_speed = min( target_speed, control_speed + 0.02 )
elif target_speed < control_speed:
control_speed = max( target_speed, control_speed - 0.02 )
else:
control_speed = target_speed
if target_turn > control_turn:
control_turn = min( target_turn, control_turn + 0.1 )
elif target_turn < control_turn:
control_turn = max( target_turn, control_turn - 0.1 )
else:
control_turn = target_turn
# 创建并发布twist消息
twist = Twist()
twist.linear.x = control_speed;
twist.linear.y = 0;
twist.linear.z = 0
twist.angular.x = 0;
twist.angular.y = 0;
twist.angular.z = control_turn
pub.publish(twist)
except:
print e
finally:
twist = Twist()
twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0
twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0
pub.publish(twist)
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)
至此,建图准备工作完成:
分别运行下述命令:
roslaunch robot_sim_demo robot_spawn.launch//启动仿真环境
roslaunch robot_sim_demo gmapping.launch//启动gmapping
rviz//启动rviz,添加map话题
roslaunch robot_sim_demo mbot_teleop.launch//启动控制机器人节点
开始控制机器人移动进行建图,将建好的地图使用如下命令进行保存:
rosrun map_server map_saver -f map
保存会产生两个文件,以map名字命名:
然后将这两个文件copy到robot_sim_demo文件夹下面的maps下面,建图完成.
导航
(1)安装导航功能包:
sudo apt-get install ros-kinetic-navigation
(2)配置代价地图文件
在config文件夹下新建mbot文件夹,同时新建下图5个文件:base_local_planner_params.yaml
:
controller_frequency: 3.0
recovery_behavior_enabled: false
clearing_rotation_allowed: false
TrajectoryPlannerROS:
max_vel_x: 0.5
min_vel_x: 0.1
max_vel_y: 0.0 # zero for a differential drive robot
min_vel_y: 0.0
max_vel_theta: 1.0
min_vel_theta: -1.0
min_in_place_vel_theta: 0.5
escape_vel: -0.1
acc_lim_x: 1.5
acc_lim_y: 0.0 # zero for a differential drive robot
acc_lim_theta: 1.2
holonomic_robot: false
yaw_goal_tolerance: 0.1 # about 6 degrees
xy_goal_tolerance: 0.1 # 10 cm
latch_xy_goal_tolerance: false
pdist_scale: 0.9
gdist_scale: 0.6
meter_scoring: true
heading_lookahead: 0.325
heading_scoring: false
heading_scoring_timestep: 0.8
occdist_scale: 0.1
oscillation_reset_dist: 0.05
publish_cost_grid_pc: false
prune_plan: true
sim_time: 1.0
sim_granularity: 0.025
angular_sim_granularity: 0.025
vx_samples: 8
vy_samples: 0 # zero for a differential drive robot
vtheta_samples: 20
dwa: true
simple_attractor: false
costmap_common_params.yaml
:
obstacle_range: 2.5
raytrace_range: 3.0
footprint: [[0.175, 0.175], [0.175, -0.175], [-0.175, -0.175], [-0.175, 0.175]]
footprint_inflation: 0.01
robot_radius: 0.175
inflation_radius: 0.15
max_obstacle_height: 0.6
min_obstacle_height: 0.0
observation_sources: scan
scan: {data_type: LaserScan, topic: /scan, marking: true, clearing: true, expected_update_rate: 0}
global_costmap_params.yaml
:
global_costmap:
global_frame: map
robot_base_frame: base_footprint
update_frequency: 1.0
publish_frequency: 1.0
static_map: true
rolling_window: false
resolution: 0.01
transform_tolerance: 1.0
map_type: costmap
local_costmap_params.yaml
:
local_costmap:
global_frame: odom
robot_base_frame: base_footprint
update_frequency: 3.0
publish_frequency: 1.0
static_map: true
rolling_window: false
width: 6.0
height: 6.0
resolution: 0.01
transform_tolerance: 1.0
move_base_params.yaml
:
shutdown_costmaps: false
controller_frequency: 10.0
planner_patience: 5.0
controller_patience: 15.0
conservative_reset_dist: 3.0
planner_frequency: 5.0
oscillation_timeout: 10.0
oscillation_distance: 0.2
(3)launch文件夹下分别添加 move_base.launch
amcl.launch
nav_cloister_demo.launch
三个文件:具体内容如下:move_base.launch
:
注意,文件路径要结合自己的文件放置位置
<launch>
<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true">
<rosparam file="$(find robot_sim_demo)/config/mbot/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find robot_sim_demo)/config/mbot/costmap_common_params.yaml" command="load" ns="local_costmap" />
<rosparam file="$(find robot_sim_demo)/config/mbot/local_costmap_params.yaml" command="load" />
<rosparam file="$(find robot_sim_demo)/config/mbot/global_costmap_params.yaml" command="load" />
<rosparam file="$(find robot_sim_demo)/config/mbot/move_base_params.yaml" command="load" />
<rosparam file="$(find robot_sim_demo)/config/mbot/base_local_planner_params.yaml" command="load" />
</node>
</launch>
amcl.launch
:
<launch>
<arg name="use_map_topic" default="false"/>
<arg name="scan_topic" default="scan"/>
<node pkg="amcl" type="amcl" name="amcl" clear_params="true">
<param name="use_map_topic" value="$(arg use_map_topic)"/>
<!-- Publish scans from best pose at a max of 10 Hz -->
<param name="odom_model_type" value="diff"/>
<param name="odom_alpha5" value="0.1"/>
<param name="gui_publish_rate" value="10.0"/>
<param name="laser_max_beams" value="60"/>
<param name="laser_max_range" value="12.0"/>
<param name="min_particles" value="500"/>
<param name="max_particles" value="2000"/>
<param name="kld_err" value="0.05"/>
<param name="kld_z" value="0.99"/>
<param name="odom_alpha1" value="0.2"/>
<param name="odom_alpha2" value="0.2"/>
<!-- translation std dev, m -->
<param name="odom_alpha3" value="0.2"/>
<param name="odom_alpha4" value="0.2"/>
<param name="laser_z_hit" value="0.5"/>
<param name="laser_z_short" value="0.05"/>
<param name="laser_z_max" value="0.05"/>
<param name="laser_z_rand" value="0.5"/>
<param name="laser_sigma_hit" value="0.2"/>
<param name="laser_lambda_short" value="0.1"/>
<param name="laser_model_type" value="likelihood_field"/>
<!-- <param name="laser_model_type" value="beam"/> -->
<param name="laser_likelihood_max_dist" value="2.0"/>
<param name="update_min_d" value="0.25"/>
<param name="update_min_a" value="0.2"/>
<param name="odom_frame_id" value="odom"/>
<param name="resample_interval" value="1"/>
<!-- Increase tolerance because the computer can get quite busy -->
<param name="transform_tolerance" value="1.0"/>
<param name="recovery_alpha_slow" value="0.0"/>
<param name="recovery_alpha_fast" value="0.0"/>
<remap from="scan" to="$(arg scan_topic)"/>
</node>
</launch>
nav_cloister_demo.launch
:
注意:该文件下面的map配置信息yaml文件替换成自己建好的地图.,launch文件路径也要换成自己的.
<launch>
<!-- 设置地图的配置文件 -->
<arg name="map" default="map.yaml" />
<!-- 运行地图服务器,并且加载设置的地图-->
<node name="map_server" pkg="map_server" type="map_server" args="$(find robot_sim_demo)/maps/$(arg map)"/>
<!-- 运行move_base节点 -->
<include file="$(find robot_sim_demo)/launch/move_base.launch"/>
<!-- 启动AMCL节点 -->
<include file="$(find robot_sim_demo)/launch/amcl.launch" />
<!-- 对于虚拟定位,需要设置一个/odom与/map之间的静态坐标变换 -->
<node pkg="tf" type="static_transform_publisher" name="map_odom_broadcaster" args="0 0 0 0 0 0 /map /odom 100" />
<!-- 运行rviz -->
<node pkg="rviz" type="rviz" name="rviz" args="-d $(find robot_sim_demo)/config/demo.rviz"/>
</launch>
文件配置完成,开始进行导航仿真:
依次输入以下命令:
roslaunch robot_sim_demo robot_spawn.launch//启动仿真环境
roslaunch robot_sim_demo nav_cloister_demo.launch//启动导航节点
如下图:
然后在rviz上方的2D Nav Goal 控制,让机器人朝着某个方向移动
避障
至此,导航完成.