欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

UVA - 10870 Recurrences 【矩阵快速幂】

程序员文章站 2022-06-04 12:10:42
...

题目链接

https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553

题意

给出一个表达式 算法 f(n)

思路

n 很大 自然想到是 矩阵快速幂

那么问题就是 怎么构造矩阵

我们想到的一种构造方法是

n = 2 时
UVA - 10870 Recurrences 【矩阵快速幂】

n = 3 时

UVA - 10870 Recurrences 【矩阵快速幂】

然后大概就能够发现规律了吧 。。

AC代码

#include <cstdio>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <map>
#include <stack>
#include <set>
#include <list>
#include <numeric>
#include <sstream>
#include <iomanip>
#include <limits>

#define CLR(a, b) memset(a, (b), sizeof(a))
#define pb push_back
#define bug puts("***bug***");
#define fi first
#define se second
#define stack_expand #pragma comment(linker, "/STACK:102400000,102400000")
#define syn_close   ios::sync_with_stdio(false);cin.tie(0);
#define sp system("pause");
//#define bug 
//#define gets gets_s

using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef pair <string, int> psi;
typedef pair <string, string> pss;
typedef pair <double, int> pdi;

const double PI = acos(-1.0);
const double E = exp(1.0);
const double eps = 1e-8;

const int INF = 0x3f3f3f3f;
const int maxn = 1e2 + 10;
const int MOD = 142857;

int d, n, m;

ll a[20], b[20];

struct Matrix
{
    ll a[20][20];
    Matrix() {}
    Matrix operator * (Matrix const &b)const
    {
        Matrix res;
        CLR(res.a, 0);
        for (int i = 0; i < d; i++)
            for (int j = 0; j < d; j++)
                for (int k = 0; k < d; k++)
                    res.a[i][j] = (res.a[i][j] + this->a[i][k] * b.a[k][j]) % m;
        return res;
    }
};

Matrix pow_mod(Matrix ans, int n)
{
    Matrix base;
    CLR(base.a, 0);
    for (int i = 0; i < d; ++i)
    {
        base.a[i][0] = a[i];
    }
    for (int i = 0; i < d; ++i)
    {
        base.a[i][i + 1] = 1;
    }
    while (n > 0)
    {
        if (n & 1)
            ans = ans * base;
        base = base * base;
        n >>= 1;
    }
    return ans;
}

int main()
{
    while (scanf("%d %d %d", &d, &n, &m) && (d || n || m))
    {
        for (int i = 0; i < d; i++)
            scanf("%lld", &a[i]);
        for (int i = 0; i < d; i++)
            scanf("%lld", &b[i]);
        if (n <= d)
        {
            printf("%lld\n", b[n - 1] % m);
            continue;
        }
        Matrix ans;
        for (int i = 0; i < d; i++)
            for (int j = 0; j < d; j++)
                ans.a[i][j] = b[d - j - 1];
        ans = pow_mod(ans, n - d);
        printf("%lld\n", ans.a[0][0]);
    }
    return 0;
}
相关标签: 矩阵快速幂