题目:
给定如下图所示的无向连通图,假定图中所有边的权值都为1;
显然,从源点A到终点T的最短路径有多条,求不同的最短路径的数目。
注:两条路径中有任意结点不同或者结点顺序不同,都称为不同的路径。
思路:
给定的图中,边权相等且非负,Dijkstra最短路径算法退化为BFS广度优先搜索。实现过程中可以使用队列。
计算到某结点最短路径条数,只需计算与该结点相邻的结点的最短路径值和最短路径条数,把最短路径值最小且相等的最短路径条数加起来即可。
答案:12
代码:
#include <iostream>
#include <queue>
#include <string.h>
using namespace std;
const int N=16;
int calNumOfPath(int G[N][N]){
int stepNum[N]; // how many steps to reach i
int pathNum[N]; // how many paths can reach i
bool visited[N];
memset(stepNum,0,N*sizeof(int));
memset(pathNum,0,N*sizeof(int));
memset(visited,false,N*sizeof(bool));
stepNum[0]=0;
pathNum[0]=1;
queue<int> q;
q.push(0);
while(!q.empty()){
int node=q.front();
q.pop();
visited[node]=true;
int s=stepNum[node]+1;
for(int i=0;i<N;i++){
if(i!=node && !visited[i] && G[node][i]==1){
if(stepNum[i]==0 || pathNum[i]>s){
stepNum[i]=s;
pathNum[i]=pathNum[node];
q.push(i);
}
else if(stepNum[i]==s){
pathNum[i]=pathNum[i]+pathNum[node];
}
}
}
}
return pathNum[N-1];
}
int main()
{
int G[16][16]={
{0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0},
{1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0},
{0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0},
{1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,1,0,1,0,0,1,0,0,0,0,0,0},
{0,0,1,0,0,1,0,1,0,0,1,0,0,0,0,0},
{0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0},
{0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0},
{0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0},
{0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0},
{0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1},
{0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0}};
cout << calNumOfPath(G) << endl;
return 0;
}