第一部分转自:http://blog.csdn.net/r1254/article/details/47418871
矩阵、向量初始化
#include <iostream>
#include "Eigen/Dense"
using namespace Eigen;
int main()
{
MatrixXf m1(3,4);
MatrixXf m2(4,3);
MatrixXf m3(3,3);
Vector3f v1;
Matrix3d m = Matrix3d::Random();
m1 = MatrixXf::Zero(3,4);
m2 = MatrixXf::Zero(4,3);
m3 = MatrixXf::Identity(3,3);
v1 = Vector3f::Zero();
m1 << 1,0,0,1,
1,5,0,1,
0,0,9,1;
m2 << 1,0,0,
0,4,0,
0,0,7,
1,1,1;
Vector3d v3(1,2,3);
VectorXf vx(30);
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
C++数组和矩阵转换
使用Map函数,可以实现Eigen的矩阵和c++中的数组直接转换,语法如下:
int i;
double *aMat = new double[20];
for(i =0;i<20;i++)
{
aMat[i] = rand()%11;
}
Eigen:Map<Matrix<double,4,5> > staMat(aMat);
for (int i = 0; i < staMat.size(); i++)
std::cout << *(staMat.data() + i) << " ";
std::cout << std::endl << std::endl;
Map<MatrixXd> dymMat(aMat,4,5);
for (int i = 0; i < dymMat.size(); i++)
std::cout << *(dymMat.data() + i) << " ";
std::cout << std::endl << std::endl;
dymMat.data();
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
矩阵基础操作
eigen重载了基础的+ - * / += -= = /= 可以表示标量和矩阵或者矩阵和矩阵
using namespace Eigen;
int main()
{
//单个取值,单个赋值
double value00 = staMat(0,0);
double value10 = staMat(1,0);
staMat(0,0) = 100;
std::cout << value00 <<value10<<std::endl;
std::cout <<staMat<<std::endl<<std::endl;
//加减乘除示例 Matrix2d 等同于 Matrix<double,2,2>
Matrix2d a;
a << 1, 2,
3, 4;
MatrixXd b(2,2);
b << 2, 3,
1, 4;
Matrix2d c = a + b;
std::cout<< c<<std::endl<<std::endl;
c = a - b;
std::cout<<c<<std::endl<<std::endl;
c = a * 2;
std::cout<<c<<std::endl<<std::endl;
c = 2.5 * a;
std::cout<<c<<std::endl<<std::endl;
c = a / 2;
std::cout<<c<<std::endl<<std::endl;
c = a * b;
std::cout<<c<<std::endl<<std::endl;
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
点积和叉积
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
Vector3d v(1,2,3);
Vector3d w(0,1,2);
std::cout<<v.dot(w)<<std::endl<<std::endl;
std::cout<<w.cross(v)<<std::endl<<std::endl;
}
*/
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
转置、伴随、行列式、逆矩阵
小矩阵(4 * 4及以下)eigen会自动优化,默认采用LU分解,效率不高
using namespace std;
using namespace Eigen;
int main()
{
Matrix2d c;
c << 1, 2,
3, 4;
//转置、伴随
std::cout<<c<<std::endl<<std::endl;
std::cout<<"转置\n"<<c.transpose()<<std::endl<<std::endl;
std::cout<<"伴随\n"<<c.adjoint()<<std::endl<<std::endl;
//逆矩阵、行列式
std::cout << "行列式: " << c.determinant() << std::endl;
std::cout << "逆矩阵\n" << c.inverse() << std::endl;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
计算特征值和特征向量
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
std::cout << "Here is the matrix A:\n" << a << std::endl;
SelfAdjointEigenSolver<Matrix2d> eigensolver(a);
if (eigensolver.info() != Success) abort();
std::cout << "特征值:\n" << eigensolver.eigenvalues() << std::endl;
std::cout << "Here's a matrix whose columns are eigenvectors of A \n"
<< "corresponding to these eigenvalues:\n"
<< eigensolver.eigenvectors() << std::endl;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
解线性方程
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
Matrix4d A;
A << 2,-1,-1,1,
1,1,-2,1,
4,-6,2,-2,
3,6,-9,7;
Vector4d B(2,4,4,9);
Vector4d x = A.colPivHouseholderQr().solve(B);
Vector4d x2 = A.llt().solve(B);
Vector4d x3 = A.ldlt().solve(B);
std::cout << "The solution is:\n" << x <<"\n\n"<<x2<<"\n\n"<<x3 <<std::endl;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
除了colPivHouseholderQr、LLT、LDLT,还有以下的函数可以求解线性方程组,请注意精度和速度: 解小矩阵(4*4)基本没有速度差别
最小二乘求解
最小二乘求解有两种方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩阵速度没有区别,jacobiSvd可能更快,大矩阵最好用colPivHouseholderQr
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf A1 = MatrixXf::Random(3, 2);
std::cout << "Here is the matrix A:\n" << A1 << std::endl;
VectorXf b1 = VectorXf::Random(3);
std::cout << "Here is the right hand side b:\n" << b1 << std::endl;
std::cout << "The least-squares solution is:\n"
<< A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
std::cout << "The least-squares solution is:\n"
<< A1.colPivHouseholderQr().solve(b1) << std::endl;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
稀疏矩阵
稀疏矩阵的头文件包括:
#include
typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries);
for(...)
{
tripletList.push_back(T(i,j,v_ij));
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
2.直接将已知的非0值插入
SparseMatrix<double> mat(rows,cols);
mat.reserve(VectorXi::Constant(cols,6));
for(...)
{
// i,j 个非零值 v_ij != 0
mat.insert(i,j) = v_ij;
}
mat.makeCompressed(); // optional
稀疏矩阵支持大部分一元和二元运算:
sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
二元运算中,稀疏矩阵和普通矩阵可以混合使用
//dm表示普通矩阵
dm2 = sm1 + dm1;
也支持计算转置矩阵和伴随矩阵
第二部分转自(同matlab命令对比,比较清晰):
http://blog.csdn.net/yuxiangyunei/article/details/50220287
(http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt)
Eigen 矩阵定义
-
#include <Eigen/Dense>
-
-
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
-
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
-
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
-
Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
-
Matrix3f P, Q, R; // 3x3 float matrix.
-
Vector3f x, y, z; // 3x1 float matrix.
-
RowVector3f a, b, c; // 1x3 float matrix.
-
VectorXd v; // Dynamic column vector of doubles
-
double s;
Eigen 基础使用
-
// Basic usage
-
// Eigen // Matlab // comments
-
x.size() // length(x) // vector size
-
C.rows() // size(C,1) // number of rows
-
C.cols() // size(C,2) // number of columns
-
x(i) // x(i+1) // Matlab is 1-based
-
C(i,j) // C(i+1,j+1) //
-
-
A.resize(4, 4); // Runtime error if assertions are on.
-
B.resize(4, 9); // Runtime error if assertions are on.
-
A.resize(3, 3); // Ok; size didn't change.
-
B.resize(3, 9); // Ok; only dynamic cols changed.
-
-
A << 1, 2, 3, // Initialize A. The elements can also be
-
4, 5, 6, // matrices, which are stacked along cols
-
7, 8, 9; // and then the rows are stacked.
-
B << A, A, A; // B is three horizontally stacked A's.
-
A.fill(10); // Fill A with all 10's.
Eigen 特殊矩阵生成
-
// Eigen // Matlab
-
MatrixXd::Identity(rows,cols) // eye(rows,cols)
-
C.setIdentity(rows,cols) // C = eye(rows,cols)
-
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
-
C.setZero(rows,cols) // C = ones(rows,cols)
-
MatrixXd::Ones(rows,cols) // ones(rows,cols)
-
C.setOnes(rows,cols) // C = ones(rows,cols)
-
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
-
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
-
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
-
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
Eigen 矩阵分块
-
// Matrix slicing and blocks. All expressions listed here are read/write.
-
// Templated size versions are faster. Note that Matlab is 1-based (a size N
-
// vector is x(1)...x(N)).
-
// Eigen // Matlab
-
x.head(n) // x(1:n)
-
x.head<n>() // x(1:n)
-
x.tail(n) // x(end - n + 1: end)
-
x.tail<n>() // x(end - n + 1: end)
-
x.segment(i, n) // x(i+1 : i+n)
-
x.segment<n>(i) // x(i+1 : i+n)
-
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
-
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
-
P.row(i) // P(i+1, :)
-
P.col(j) // P(:, j+1)
-
P.leftCols<cols>() // P(:, 1:cols)
-
P.leftCols(cols) // P(:, 1:cols)
-
P.middleCols<cols>(j) // P(:, j+1:j+cols)
-
P.middleCols(j, cols) // P(:, j+1:j+cols)
-
P.rightCols<cols>() // P(:, end-cols+1:end)
-
P.rightCols(cols) // P(:, end-cols+1:end)
-
P.topRows<rows>() // P(1:rows, :)
-
P.topRows(rows) // P(1:rows, :)
-
P.middleRows<rows>(i) // P(i+1:i+rows, :)
-
P.middleRows(i, rows) // P(i+1:i+rows, :)
-
P.bottomRows<rows>() // P(end-rows+1:end, :)
-
P.bottomRows(rows) // P(end-rows+1:end, :)
-
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
-
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
-
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
-
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
-
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
-
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
-
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
-
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
Eigen 矩阵元素交换
-
// Of particular note is Eigen's swap function which is highly optimized.
-
// Eigen // Matlab
-
R.row(i) = P.col(j); // R(i, :) = P(:, i)
-
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
Eigen 矩阵转置
-
// Views, transpose, etc; all read-write except for .adjoint().
-
// Eigen // Matlab
-
R.adjoint() // R'
-
R.transpose() // R.' or conj(R')
-
R.diagonal() // diag(R)
-
x.asDiagonal() // diag(x)
-
R.transpose().colwise().reverse(); // rot90(R)
-
R.conjugate() // conj(R)
Eigen 矩阵乘积
-
// All the same as Matlab, but matlab doesn't have *= style operators.
-
// Matrix-vector. Matrix-matrix. Matrix-scalar.
-
y = M*x; R = P*Q; R = P*s;
-
a = b*M; R = P - Q; R = s*P;
-
a *= M; R = P + Q; R = P/s;
-
R *= Q; R = s*P;
-
R += Q; R *= s;
-
R -= Q; R /= s;
Eigen 矩阵单个元素操作
-
// Vectorized operations on each element independently
-
// Eigen // Matlab
-
R = P.cwiseProduct(Q); // R = P .* Q
-
R = P.array() * s.array();// R = P .* s
-
R = P.cwiseQuotient(Q); // R = P ./ Q
-
R = P.array() / Q.array();// R = P ./ Q
-
R = P.array() + s.array();// R = P + s
-
R = P.array() - s.array();// R = P - s
-
R.array() += s; // R = R + s
-
R.array() -= s; // R = R - s
-
R.array() < Q.array(); // R < Q
-
R.array() <= Q.array(); // R <= Q
-
R.cwiseInverse(); // 1 ./ P
-
R.array().inverse(); // 1 ./ P
-
R.array().sin() // sin(P)
-
R.array().cos() // cos(P)
-
R.array().pow(s) // P .^ s
-
R.array().square() // P .^ 2
-
R.array().cube() // P .^ 3
-
R.cwiseSqrt() // sqrt(P)
-
R.array().sqrt() // sqrt(P)
-
R.array().exp() // exp(P)
-
R.array().log() // log(P)
-
R.cwiseMax(P) // max(R, P)
-
R.array().max(P.array()) // max(R, P)
-
R.cwiseMin(P) // min(R, P)
-
R.array().min(P.array()) // min(R, P)
-
R.cwiseAbs() // abs(P)
-
R.array().abs() // abs(P)
-
R.cwiseAbs2() // abs(P.^2)
-
R.array().abs2() // abs(P.^2)
-
(R.array() < s).select(P,Q); // (R < s ? P : Q)
Eigen 矩阵化简
-
// Reductions.
-
int r, c;
-
// Eigen // Matlab
-
R.minCoeff() // min(R(:))
-
R.maxCoeff() // max(R(:))
-
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
-
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
-
R.sum() // sum(R(:))
-
R.colwise().sum() // sum(R)
-
R.rowwise().sum() // sum(R, 2) or sum(R')'
-
R.prod() // prod(R(:))
-
R.colwise().prod() // prod(R)
-
R.rowwise().prod() // prod(R, 2) or prod(R')'
-
R.trace() // trace(R)
-
R.all() // all(R(:))
-
R.colwise().all() // all(R)
-
R.rowwise().all() // all(R, 2)
-
R.any() // any(R(:))
-
R.colwise().any() // any(R)
-
R.rowwise().any() // any(R, 2)
Eigen 矩阵点乘
-
// Dot products, norms, etc.
-
// Eigen // Matlab
-
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
-
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
-
x.dot(y) // dot(x, y)
-
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
Eigen 矩阵类型转换
-
//// Type conversion
-
// Eigen // Matlab
-
A.cast<double>(); // double(A)
-
A.cast<float>(); // single(A)
-
A.cast<int>(); // int32(A)
-
A.real(); // real(A)
-
A.imag(); // imag(A)
-
// if the original type equals destination type, no work is done
-
// Note that for most operations Eigen requires all operands to have the same type:
-
MatrixXf F = MatrixXf::Zero(3,3);
-
A += F; // illegal in Eigen. In Matlab A = A+F is allowed
-
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
-
-
// Eigen can map existing memory into Eigen matrices.
-
float array[3];
-
Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
-
int data[4] = {1, 2, 3, 4};
-
Matrix2i mat2x2(data); // copies data into mat2x2
-
Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2
-
MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
Eigen 求解线性方程组 Ax = b
-
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
-
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
-
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
-
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
-
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
-
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
-
// .ldlt() -> .matrixL() and .matrixD()
-
// .llt() -> .matrixL()
-
// .lu() -> .matrixL() and .matrixU()
-
// .qr() -> .matrixQ() and .matrixR()
-
// .svd() -> .matrixU(), .singularValues(), and .matrixV()
Eigen 矩阵特征值
-
// Eigenvalue problems
-
// Eigen // Matlab
-
A.eigenvalues(); // eig(A);
-
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
-
eig.eigenvalues(); // diag(val)
-
eig.eigenvectors(); // vec
-
// For self-adjoint matrices use SelfAdjointEigenSolver<>