欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【图论】求无向连通图的割点

程序员文章站 2022-06-03 16:52:20
...

1. 割点与连通度

在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point)。一个没有关节点的连通图称为重连通图(biconnected graph)。若在连通图上至少删去k 个顶点才能破坏图的连通性,则称此图的连通度为k。

关节点和重连通图在实际中较多应用。显然,一个表示通信网络的图的连通度越高,其系统越可靠,无论是哪一个站点出现故障或遭到外界破坏,都不影响系统的正常工作;又如,一个航空网若是重连通的,则当某条航线因天气等某种原因关闭时,旅客仍可从别的航线绕道而行;再如,若将大规模的集成电路的关键线路设计成重连通的话,则在某些元件失效的情况下,整个片子的功能不受影响,反之,在战争中,若要摧毁敌方的运输线,仅需破坏其运输网中的关节点即可。

简单的例子

(a)中G7 是连通图,但不是重连通图。图中有三个关节点A、B 和G 。若删去顶点B 以及所有依附顶点B 的边,G7 就被分割成三个连通分量{A、C、F、L、M、J}、{G、H、I、K}和{D、E}。类似地,若删去顶点A 或G 以及所依附于它们的边,则G7 被分割成两个连通分量。

【图论】求无向连通图的割点

2. 求割点的方法

暴力的方法:

  • 依次删除每一个节点v
  • 用DFS(或BFS)判断还是否连通
  • 再把节点v加入图中

若用邻接表(adjacency list),需要做\(V\)次DFS,时间复杂度为\(O(V*(V+E))\)。(题外话:我在面试实习的时候,只想到暴力方法;面试官提示只要一次DFS就就可以找到割点,当时死活都没想出来)。

有关DFS搜索树的概念

在介绍算法之前,先介绍几个基本概念

  • DFS搜索树:用DFS对图进行遍历时,按照遍历次序的不同,我们可以得到一棵DFS搜索树,如图(b)所示。
  • 树边:(在[2]中称为父子边),在搜索树中的实线所示,可理解为在DFS过程中访问未访问节点时所经过的边。
  • 回边:(在[2]中称为返祖边后向边),在搜索树中的虚线所示,可理解为在DFS过程中遇到已访问节点时所经过的边。

基于DFS的算法

该算法是R.Tarjan发明的。观察DFS搜索树,我们可以发现有两类节点可以成为割点:

  1. 对根节点u,若其有两棵或两棵以上的子树,则该根结点u为割点;
  2. 对非叶子节点u(非根节点),若其子树的节点均没有指向u的祖先节点的回边,说明删除u之后,根结点与u的子树的节点不再连通;则节点u为割点。

对于根结点,显然很好处理;但是对于非叶子节点,怎么去判断有没有回边是一个值得深思的问题。

我们用dfn[u]记录节点u在DFS过程中被遍历到的次序号,low[u]记录节点u或u的子树通过非父子边追溯到最早的祖先节点(即DFS次序号最小),那么low[u]的计算过程如下:

\[ low[u] = \left \{ { \matrix { { \min \{ low[u],\ low[v]\} } & {(u,v)为树边} \cr { \min \{ low[u],\ dfn[v]\} } & {(u,v)为回边且v不为u的父亲节点} \cr } } \right. \]

下表给出图(a)对应的dfn与low数组值。

i 0 1 2 3 4 5 6 7 8 9 10 11 12
vertex A B C D E F G H I J K L M
dfn[i] 1 5 12 10 11 13 8 6 9 4 7 2 3
low[i] 1 1 1 5 5 1 5 5 8 2 5 1 1

对于情况2,当(u,v)为树边且low[v] >= dfn[u]时,节点u才为割点。该式子的含义:以节点v为根的子树所能追溯到最早的祖先节点要么为v要么为u。

代码实现

void dfs(int u) {
    //记录dfs遍历次序
    static int counter = 0; 
    
    //记录节点u的子树数
    int children = 0;
    
    ArcNode *p = graph[u].firstArc;
    visit[u] = 1;

    //初始化dfn与low
    dfn[u] = low[u] = ++counter;

    for(; p != NULL; p = p->next) {
        int v = p->adjvex;
        
        //节点v未被访问,则(u,v)为树边
        if(!visit[v]) {
            children++;
            parent[v] = u;
            dfs(v);
            low[u] = min(low[u], low[v]);
            //case (1)
            if(parent[u] == NIL && children > 1) {
                printf("articulation point: %d\n", u);
            }
            //case (2)
            if(parent[u] != NIL && low[v] >= dfn[u]) {
                printf("articulation point: %d\n", u);
            }
        }

        //节点v已访问,则(u,v)为回边
        else if(v != parent[u]) {
            low[u] = min(low[u], dfn[v]);
        }
    }
}

采用邻接表存储图,该算法的时间复杂度应与DFS相同,为\(O(V+E)\)

3. 参考资料

[1] see xidian, 图的连通性—关节点和重连通分量.
[2] byvoid, 图的割点、桥与双连通分支.
[3] GeeksforGeeks, Articulation Points (or Cut Vertices) in a Graph.