欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

C++矩阵计算库Eigen3之:线性代数与分解

程序员文章站 2022-06-03 12:23:46
...

C++矩阵计算库Eigen3之:线性代数与分解的九个小例子


C++矩阵计算库Eigen3之:线性代数与分解

我写了一个示例程序来展示Eigen3的一些接口使用,一共有九个小例子,一些来自官网示例,后续我还会写这种程序展示更复杂的矩阵运算功能。你必须在使用时,注释掉其他主函数,使用编译链接语句、运行 :

[email protected]:# g++ Linear_algebra_and_decompositions.cpp -o la -I/download/eigen
[email protected]:# ./la
Here is the matrix A:
 0.680375   0.59688
-0.211234  0.823295
 0.566198 -0.604897
Here is the right hand side b:
-0.329554
 0.536459
-0.444451
The least-squares solution is:
-0.669626
 0.314253

下面是程序:

#include <iostream>
#include <Eigen/Dense>

//g++ Linear_algebra_and_decompositions.cpp -o la -I/download/eigen

using namespace std;
using namespace Eigen;


//QR方法解线性方程组
int main()
{
   Matrix3f A;
   Vector3f b;
   A << 1,2,3,  4,5,6,  7,8,10;
   b << 3, 3, 4;
   cout << "Here is the matrix A:\n" << A << endl;
   cout << "Here is the vector b:\n" << b << endl;
   Vector3f x = A.colPivHouseholderQr().solve(b);
   cout << "The solution is:\n" << x << endl;
}


//矩阵求逆
int main()
{
   Matrix2f A, b;
   A << 2, -1, -1, 3;
   b << 1, 2, 3, 1;
   cout << "Here is the matrix A:\n" << A << endl;
   cout << "Here is the right hand side b:\n" << b << endl;
   Matrix2f x = A.ldlt().solve(b);
   cout << "The solution is:\n" << x << endl;
}


//计算数值法求解和真实值的残差
int main()
{
   MatrixXd A = MatrixXd::Random(100,100);
   MatrixXd b = MatrixXd::Random(100,50);
   MatrixXd x = A.fullPivLu().solve(b);
   double relative_error = (A*x - b).norm() / b.norm(); // norm() is L2 norm
   cout << "The relative error is:\n" << relative_error << endl;
}


//计算特征值和特征向量
int main()
{
   Matrix2f A;
   A << 1, 2, 2, 3;
   cout << "Here is the matrix A:\n" << A << endl;
   SelfAdjointEigenSolver<Matrix2f> eigensolver(A);
   if (eigensolver.info() != Success) abort();
   cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl;
   cout << "Here's a matrix whose columns are eigenvectors of A \n"
        << "corresponding to these eigenvalues:\n"
        << eigensolver.eigenvectors() << endl;
}


//计算逆行列式
int main()
{
   Matrix3f A;
   A << 1, 2, 1,
        2, 1, 0,
        -1, 1, 2;
   cout << "Here is the matrix A:\n" << A << endl;
   cout << "The determinant of A is " << A.determinant() << endl;
   cout << "The inverse of A is:\n" << A.inverse() << endl;
}


//最小二乘解
int main()
{
   MatrixXf A = MatrixXf::Random(3, 2);
   cout << "Here is the matrix A:\n" << A << endl;
   VectorXf b = VectorXf::Random(3);
   cout << "Here is the right hand side b:\n" << b << endl;
   cout << "The least-squares solution is:\n"
        << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
}


//分离矩阵计算与构造(解耦合)
int main()
{
   Matrix2f A, b;
   LLT<Matrix2f> llt;
   A << 2, -1, -1, 3;
   b << 1, 2, 3, 1;
   cout << "Here is the matrix A:\n" << A << endl;
   cout << "Here is the right hand side b:\n" << b << endl;
   cout << "Computing LLT decomposition..." << endl;
   llt.compute(A);
   cout << "The solution is:\n" << llt.solve(b) << endl;
   A(1,1)++;
   cout << "The matrix A is now:\n" << A << endl;
   cout << "Computing LLT decomposition..." << endl;
   llt.compute(A);
   cout << "The solution is now:\n" << llt.solve(b) << endl;
}


// Rank-revealing分解
int main()
{
   Matrix3f A;
   A << 1, 2, 5,
        2, 1, 4,
        3, 0, 3;
   cout << "Here is the matrix A:\n" << A << endl;
   FullPivLU<Matrix3f> lu_decomp(A);
   cout << "The rank of A is " << lu_decomp.rank() << endl;
   cout << "Here is a matrix whose columns form a basis of the null-space of A:\n"
        << lu_decomp.kernel() << endl;
   cout << "Here is a matrix whose columns form a basis of the column-space of A:\n"
        << lu_decomp.image(A) << endl; // yes, have to pass the original A
}


//LU分解,设定阈值求秩
int main()
{
   Matrix2d A;
   A << 2, 1,
        2, 0.9999999999;
   FullPivLU<Matrix2d> lu(A);
   cout << "By default, the rank of A is found to be " << lu.rank() << endl;
   lu.setThreshold(1e-5);
   cout << "With threshold 1e-5, the rank of A is found to be " << lu.rank() << endl;
}
相关标签: c语言 eigen