欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

对sklearn的使用之数据集的拆分与训练详解(python3.6)

程序员文章站 2022-06-03 09:50:37
研修课上讲了两个例子,融合一下。 主要演示大致的过程: 导入->拆分->训练->模型报告 以及几个重要问题: ①标签二值化 ②网格搜索法调参...

研修课上讲了两个例子,融合一下。

主要演示大致的过程:

导入->拆分->训练->模型报告

以及几个重要问题:

①标签二值化

②网格搜索法调参

③k折交叉验证

④增加噪声特征(之前涉及)

from sklearn import datasets
#从cross_validation导入会出现warning,说已弃用
from sklearn.model_selection import train-test_split
from sklearn.grid_search import gridsearchcv
from sklearn.metrics import classification_report
from sklearn.svm import svc
import sklearn.exceptioins
#导入鸢尾花数据集
iris = datasets.load_iris()
#将数据集拆分为训练集和测试集各一半
#其中x为数据特征(花萼、花瓣的高度宽度),为150*4的矩阵
#y为鸢尾花种类(0, 1, 2三种),为150*1矩阵
#如果使用标签二值化, 将0, 1, 2表示为100 010 001
#使用y.label_binarize(y, classes[0, 1, 2]),变为150*3矩阵
x_train, x_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.5, random_state=0)
#set the parameters by cross_validation
turn_parameters = [{'kernel' : ['rbf', 'gamma' : [1e-3, 1e - 4, 'c':[1,10,100,1000]}, 
{'kernel':['linear'], 'c':[1,10,100,1000]}
]
#clf分离器
#使用网格搜索法调超参数
#训练集做5折交叉验证
clf = gridsearchcv(svc(c=1), turned_parameters, cv=5, scoring='%s_weighted' % score)
#用前一半train数据再做5折交叉验证
#因为之前的train_test_split已经分割为2份了
#fit-拟合
clf.fit(x_train, y_train)
#超参数
print(clf.best_params_)
#得分
for params, mean_score, scores in clf.gird_scores_:
 print("%.3f (+/-%.0.03f) for %r" % (mean_score, scores.std()*1.96,params))
#分类报告
y_true, y_pred = y_test, clf.predict(x_test)
print(classification_report(y_true, y_pred))

以上这篇对sklearn的使用之数据集的拆分与训练详解(python3.6)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。