欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)

程序员文章站 2022-06-03 08:31:24
Description 给下N,M,K.求 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学。一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d = 1}^n d^k \sum_{i = 1}^{\frac{n}{d}} \f ......

Description

给下N,M,K.求
BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)

 

感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学。一道题做一上午也是没谁了,,

首先按照套路反演化到最后应该是这个式子

$$ans = \sum_{d = 1}^n d^k \sum_{i = 1}^{\frac{n}{d}} \frac{n}{di} \frac{m}{di} \mu(i)$$

这样就可以$O(n)$计算

继续往下推,考虑$\frac{n}{di} \frac{m}{di}$对答案的贡献

设$T = id$

$ans = \sum_{T = 1}^n \frac{n}{T} \frac{m}{T} \sum_{d \mid T} ^ T d^k \mu(\frac{T}{d})$

后面那一坨是狄利克雷卷积的形式,显然是积性函数,可以直接筛

然后我在这里懵了一个小时,,

设$H(T) = \sum_{d \mid T} ^ T d^k \mu(\frac{T}{d})$

那么当$T = p^a$式,上面的式子中只有$\frac{T}{d} = 1$或$\frac{T}{d} = p$式,$\mu(\frac{T}{d})$才不为$0$

那么把式子展开$H(p^{a + 1}) = H(p^a) * (p^k)$

 

// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#define LL long long 
using namespace std;
const int MAXN = 5 * 1e6 + 10, mod = 1e9 + 7;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int T, K;
int prime[MAXN], vis[MAXN], tot, mu[MAXN];
LL H[MAXN], low[MAXN];
LL fastpow(LL a, LL p) {
    LL base = 1;
    while(p) {
        if(p & 1) base = (base * a) % mod;
        a = (a * a) % mod; p >>= 1;
    }
    return base;
} 
void GetH(int N) {
    vis[1] = H[1] = mu[1] = low[1] = 1;
    for(int i = 2; i <= N; i++) {
        if(!vis[i]) prime[++tot] = i, mu[i] = -1, H[i] = (-1 + fastpow(i, K) + mod) % mod, low[i] = i;
        for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
            vis[i * prime[j]] = 1;
            if(!(i % prime[j])) {
                mu[i * prime[j]] = 0; low[i * prime[j]] = (low[i] * prime[j]) % mod; 
                if(low[i] == i) 
                    //H[i * prime[j]] = (H[i] + fastpow((i * prime[j]), K)) % mod;
                    H[i * prime[j]] = H[i] * (fastpow(prime[j], K)) % mod;
                else H[i * prime[j]] = H[i / low[i]] * H[prime[j] * low[i]] % mod;
                break;
            } 
            mu[i * prime[j]] = mu[i] * mu[prime[j]] % mod;
            H[i * prime[j]] = H[i] * H[prime[j]] % mod;
            low[i * prime[j]] = prime[j] % mod;
        }
    }
    for(int i = 2; i <= N; i++) H[i] = (H[i] + H[i - 1] + mod) % mod;
}
int main() {
    T = read(); K = read();
    GetH(5000001);
    while(T--) {
        int N = read(), M = read(), last;
        LL ans = 0;
        if(N > M) swap(N, M);
        for(int T = 1; T <= N; T = last + 1) {
            last = min(N / (N / T), M / (M / T));
            ans = (ans + (1ll * (N / T) * (M / T) % mod) * (H[last] - H[T - 1] + mod)) % mod;
        }
        printf("%lld\n", ans % mod);
    }
    return 0;
}
/*
2 5000000
7 8
123 456
4999999 5000000
*/