基于HAL库的DMA + 空闲中断实现 uart通信(stm32f103rc)
我的工程是用cubemx直接生成的,关于用cubemx生成工程网上有很多参考资料,这里不做过多说明。只看一下我的uart配置参数即可(只付上uart2的配置,uart1的配置同样):
cubemx生成工程后会自动添加 MX_USART1_UART_Init();MX_USART2_UART_Init();函数以及全局句柄:
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart1_rx;
DMA_HandleTypeDef hdma_usart1_tx;
DMA_HandleTypeDef hdma_usart2_tx;
DMA_HandleTypeDef hdma_usart2_rx;
在usart.c中还有cubemx自动生成的HAL_UART_MspInit();HAL_UART_MspDeInit();函数,这些函数的调用过程是这样的:
下面讲解用户自己添加部分的代码实现:
首先,要打开空闲中断(打开中断可以放在uart初始化成后):
__enable_irq();
__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//开启空闲中断
__HAL_UART_ENABLE_IT(&huart2, UART_IT_IDLE);//开启空闲中断
其次,开启DAM传输(放在打开中断之后):
HAL_UART_Receive_DMA(&huart1, (uint8_t*)receive_buff, 255);
HAL_UART_Receive_DMA(&huart2, (uint8_t*)uart2_rx_buf, 255);//开启DMA传输
然后,定义串口空闲中断处理函数:在串口中断中添加串口空闲中断处理函数(cubemx生成的工程所有的中断都会放在stm32f1xx_it.c中)
最后,定义串口空闲中断回调函数:用以标记数据接收完成, data_length是uart1接收到的数据长度,data_len2是uart2接收到的数据长度,uart1用receive_buff进行接收数据,uart2用uart1_rx_buf进行接收数据:
这样,uart+DMA+空闲中断接收数据代码就完全实现了。
有一点说明一下,我用的是基于rtthread的工程,所以打印函数用的是rt_kprintf()函数。如果是裸机工程的话,可以在usart.c中添加如下函数实现printf()函数打印:
下面将裸机工程的代码全部粘贴进来吧:
main.c代码:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "rtc.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "sim8xx.h"
#include "stm32f1xx_hal_gpio.h"
#include "delay.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_NVIC_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t receive_buff[255]; //定义接收数组
uint8_t receive_buff2[255]; //定义接收数组
void MCU_SysInit(void)
{
__enable_irq();
__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//开启空闲中断
__HAL_UART_ENABLE_IT(&huart2, UART_IT_IDLE);//开启空闲中断
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_RTC_Init();
/* Initialize interrupts */
MX_NVIC_Init();
/* USER CODE BEGIN 2 */
MCU_SysInit();
int res=0;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
//开启DMA传输
HAL_UART_Receive_DMA(&huart1, (uint8_t*)receive_buff, 255); //设置DMA传输,将串口1的数据搬运到recvive_buff中,//每次255个字节
HAL_UART_Receive_DMA(&huart2, (uint8_t*)receive_buff2, 255); //设置DMA传输,将串口2的数据搬运到recvive_buff2中,//每次255个字节
sim8xx_pwr_off();
delay_ms(2);
sim8xx_pwr_on();
res = sim8xx_get_status();
while(!res){
res = sim8xx_get_status();
}
printf("sim8xx status = %d.\r\n",res);
delay_ms(20);
sim8xx_write("ATE0\r\n",6);
delay_ms(2000);
sim8xx_write("AT+CPIN?\r\n",10);
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief NVIC Configuration.
* @retval None
*/
static void MX_NVIC_Init(void)
{
/* USART1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* USART2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
usart.h代码:
/**
******************************************************************************
* File Name : USART.h
* Description : This file provides code for the configuration
* of the USART instances.
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __usart_H
#define __usart_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
extern UART_HandleTypeDef huart1;
extern UART_HandleTypeDef huart2;
/* USER CODE BEGIN Private defines */
#define BUFFER_SIZE (255)
/* USER CODE END Private defines */
void MX_USART1_UART_Init(void);
void MX_USART2_UART_Init(void);
/* USER CODE BEGIN Prototypes */
void USER_UART_IRQHandler(UART_HandleTypeDef *huart);
void USAR_UART_IDLECallback(UART_HandleTypeDef *huart);
/* USER CODE END Prototypes */
#ifdef __cplusplus
}
#endif
#endif /*__ usart_H */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
usart.c代码:
/**
******************************************************************************
* File Name : USART.c
* Description : This file provides code for the configuration
* of the USART instances.
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "usart.h"
/* USER CODE BEGIN 0 */
#include <string.h>
#include <stdio.h>
extern uint8_t receive_buff[BUFFER_SIZE]; //接收缓冲区
extern uint8_t receive_buff2[255]; //定义接收数组
//Define Debug Port
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
/* USER CODE END 0 */
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart1_rx;
DMA_HandleTypeDef hdma_usart1_tx;
DMA_HandleTypeDef hdma_usart2_rx;
DMA_HandleTypeDef hdma_usart2_tx;
/* USART1 init function */
void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
/* USART2 init function */
void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(uartHandle->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspInit 0 */
/* USER CODE END USART1_MspInit 0 */
/* USART1 clock enable */
__HAL_RCC_USART1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART1 GPIO Configuration
PA9 ------> USART1_TX
PA10 ------> USART1_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART1 DMA Init */
/* USART1_RX Init */
hdma_usart1_rx.Instance = DMA1_Channel5;
hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart1_rx.Init.Mode = DMA_CIRCULAR;
hdma_usart1_rx.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_usart1_rx) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(uartHandle,hdmarx,hdma_usart1_rx);
/* USART1_TX Init */
hdma_usart1_tx.Instance = DMA1_Channel4;
hdma_usart1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart1_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart1_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart1_tx.Init.Mode = DMA_CIRCULAR;
hdma_usart1_tx.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_usart1_tx) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(uartHandle,hdmatx,hdma_usart1_tx);
/* USER CODE BEGIN USART1_MspInit 1 */
/* USER CODE END USART1_MspInit 1 */
}
else if(uartHandle->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspInit 0 */
/* USER CODE END USART2_MspInit 0 */
/* USART2 clock enable */
__HAL_RCC_USART2_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART2 DMA Init */
/* USART2_RX Init */
hdma_usart2_rx.Instance = DMA1_Channel6;
hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_rx.Init.Mode = DMA_CIRCULAR;
hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_usart2_rx) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(uartHandle,hdmarx,hdma_usart2_rx);
/* USART2_TX Init */
hdma_usart2_tx.Instance = DMA1_Channel7;
hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_tx.Init.Mode = DMA_CIRCULAR;
hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW;
if (HAL_DMA_Init(&hdma_usart2_tx) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(uartHandle,hdmatx,hdma_usart2_tx);
/* USER CODE BEGIN USART2_MspInit 1 */
/* USER CODE END USART2_MspInit 1 */
}
}
void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle)
{
if(uartHandle->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspDeInit 0 */
/* USER CODE END USART1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART1_CLK_DISABLE();
/**USART1 GPIO Configuration
PA9 ------> USART1_TX
PA10 ------> USART1_RX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_9|GPIO_PIN_10);
/* USART1 DMA DeInit */
HAL_DMA_DeInit(uartHandle->hdmarx);
HAL_DMA_DeInit(uartHandle->hdmatx);
/* USART1 interrupt Deinit */
HAL_NVIC_DisableIRQ(USART1_IRQn);
/* USER CODE BEGIN USART1_MspDeInit 1 */
/* USER CODE END USART1_MspDeInit 1 */
}
else if(uartHandle->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspDeInit 0 */
/* USER CODE END USART2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART2_CLK_DISABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_2|GPIO_PIN_3);
/* USART2 DMA DeInit */
HAL_DMA_DeInit(uartHandle->hdmarx);
HAL_DMA_DeInit(uartHandle->hdmatx);
/* USART2 interrupt Deinit */
HAL_NVIC_DisableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspDeInit 1 */
/* USER CODE END USART2_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
void USAR_UART_IDLECallback(UART_HandleTypeDef *huart)
{
if(USART1 == huart->Instance){
HAL_UART_DMAStop(&huart1); //停止本次DMA传输
uint8_t data_length = BUFFER_SIZE - __HAL_DMA_GET_COUNTER(&hdma_usart1_rx); //计算接收到的数据长度
printf("uart1 Receive Data(length = %d): ",data_length);
//测试函数:将接收到的数据打印出去
HAL_UART_Transmit(&huart1,receive_buff,data_length,0x200);
HAL_UART_Transmit_DMA(&huart2,receive_buff,data_length); //测试函数:将接收到的数据发送到串口2
printf("\r\n");
memset(receive_buff,0,data_length); //清零接收缓冲区
data_length = 0;
HAL_UART_Receive_DMA(&huart1, (uint8_t*)receive_buff, 255);//重启开始DMA传输 每次255字节数据
}
else if(USART2 == huart->Instance){
HAL_UART_DMAStop(&huart2); //停止本次DMA传输
uint8_t data_length2 = BUFFER_SIZE - __HAL_DMA_GET_COUNTER(&hdma_usart2_rx); //计算接收到的数据长度
printf("uart2 Receive Data(length = %d): ",data_length2);
/*测试函数:将接收到的数据通过串口1打印出去*/
HAL_UART_Transmit(&huart1,receive_buff2,data_length2,0x200);
printf("\r\n");
memset(receive_buff2,0,data_length2); //清零接收缓冲区
data_length2 = 0;
HAL_UART_Receive_DMA(&huart2, (uint8_t*)receive_buff2, 255); //重启开始DMA传输 每次255字节数据
}
}
void USER_UART_IRQHandler(UART_HandleTypeDef *huart)
{
if(USART1 == huart->Instance) //判断是否是串口1
{
if(RESET != __HAL_UART_GET_FLAG(&huart1, UART_FLAG_IDLE)) //判断是否是空闲中断
{
__HAL_UART_CLEAR_IDLEFLAG(&huart1); //清楚空闲中断标志(否则会一直不断进入中断)
printf("\r\nUART1 Idle IQR Detected\r\n");
USAR_UART_IDLECallback(huart); //调用中断处理函数
}
}
else if(USART2 == huart->Instance) //判断是否是串口2
{
if(RESET != __HAL_UART_GET_FLAG(&huart2, UART_FLAG_IDLE)) //判断是否是空闲中断
{
__HAL_UART_CLEAR_IDLEFLAG(&huart2); //清楚空闲中断标志(否则会一直不断进入中断)
printf("\r\nUART2 Idle IQR Detected\r\n");
USAR_UART_IDLECallback(huart); //调用中断处理函数
}
}
}
/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
stm32f1xx_it.c的代码:
引入句柄:
添加的用户中断函数,stm32f1xx_it.c其他地方没做修改。