欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

CF101532K Palindromes Building(暴力模拟)

程序员文章站 2022-06-02 22:14:28
...

题面:

An anagram is a word or phrase formed by rearranging the letters of another word or phrase, using all the original letters exactly once, such as "post", "stop", and "spot".

You are given a string s consisting of lowercase English letters. Your task is to count how many distinct anagrams of the string s are palindromes.

A palindrome is a word, phrase, number, or other sequence of characters which reads the same backward as forward, such as "madam" or "racecar".

For example, "aabb" has 6 distinct anagrams, which are: "aabb", "abab", "abba", "baab", "baba", "bbaa". Two of the previous anagrams are palindromes, which are: "abba", "baab".

 

Input:

The first line contains an integer T, where T is the number of test cases.

The first line of each test case contains an integer n (1 ≤ n ≤ 20), where n is the length of the string s.

The second line of each test contains a string s of length n consisting of lowercase English letters.

 

Output:

For each test case, print a single line containing how many distinct anagrams of the string s are palindromes.

 

Example:

 

CF101532K Palindromes Building(暴力模拟)

 

分析:

我感觉我真是弱回文串……好像除了杭电那道入门题之外我还从来没做对过一道回文串的题,看见就脑壳痛,但是没有办法,生活所迫,迟早还是要去啃的。据大佬指点是一道排列组合题,黑板上排列组合,我果然还是解不开。首先根据n的奇偶性判断能不能产生回文串,如果n为偶数,那么每种字母出现的次数都要为偶数才会出现回文串,如果n是奇数,那么有且必须有一种字母的出现次数为奇数,其余字母都出现偶数次。判断了之后用排列组合来算回文串种类,因为是回文所以从中间为轴对称,只算前半段的情况就行了,如果是总偶数个,那么不存在正中间的数,如果是总奇数个,那么中间的字母是固定的,必须是出现次数为奇数的那种字母,所以也可以直接用n/2的方式来算前半段,刚好可以把那0.5去尾。

前半段总的排列情况就是(n/2)!,其中重复的情况就是字母相同排列互换,比如两个a,aa和aa就是重复的情况,都算在(n/2)!里了,所以要除以每一种字母的(num[i]/2)!,考虑到会不会爆int,用了long long, 不过用没用上我不确定。

然而最后还是一直有点小问题,找了半天发现出在memset上……memset(num,sizeof(num),0)这个也太丢人了……我果然是memset都写不对了啊。

 

AC代码:

#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
int t, n;
int num[26];
bool flag;

int main(){
	cin>>t;
	while(t--){
		cin>>n;
		string str;
		cin>>str;
		memset(num, 0, sizeof(num));
		flag = true;
		
		for(int i = 0; i < n; i++){
			num[str[i] - 'a']++;
		}
		
		if(n % 2 == 0){
			for(int i = 0; i < 26; i++) {
				if(num[i] % 2 != 0) {
					flag = false;
					break;
				}
			}
		}
		else{
			int u = 0;
			for(int i = 0; i < 26; i++){
				if(num[i] % 2 == 1) u++;
			}
			if(u != 1) flag = false;
		}
		
		if(!flag){
			cout<<0<<endl;
			continue;
		}
		
		long long temp = 1, tempp = 1;
		
		for(int i = 1; i <= (n / 2); i++) temp *= i;
		
		for(int i = 0; i < 26; i++){
			if(num[i])
				for(int j = 1; j <= (num[i] / 2); j++) 
					tempp *= j;
		}

		cout<<temp / tempp<<endl;
	}
	return 0;
}