欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P4245 【模板】MTT(任意模数NTT)

程序员文章站 2022-06-02 15:33:55
题目背景 模板题,无背景 题目描述 给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)∗G(x) 。 系数对 pp 取模,且不保证 pp 可以分解成 p = a \cdot 2^k + 1p=a⋅2k+1 之形式。 输入输出格式 输入格式: 输入共 ......

题目背景

模板题,无背景

题目描述

给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)G(x) 。

系数对 pp 取模,且不保证 pp 可以分解成 p = a \cdot 2^k + 1p=a2k+1 之形式。

输入输出格式

输入格式:

 

输入共 33 行。
第一行 33 个整数 n, m, pn,m,p ,分别表示 F(x), G(x)F(x),G(x) 的次数以及模数 pp 。
第二行为 n+1n+1 个整数, 第 ii 个整数 a_iai 表示 F(x)F(x) 的 i-1i1 次项的系数。
第三行为 m+1m+1 个整数, 第 ii 个整数 b_ibi 表示 G(x)G(x) 的 i-1i1 次项的系数。

 

输出格式:

 

输出 n+m+1n+m+1 个整数, 第 ii 个整数 c_ici 表示 F(x) * G(x)F(x)G(x) 的 i-1i1 次项的系数。

 

输入输出样例

输入样例#1: 复制
5 8 28
19 32 0 182 99 95
77 54 15 3 98 66 21 20 38
输出样例#1: 复制
7 18 25 19 5 13 12 2 9 22 5 27 6 26

说明

1 \leq n \leq 10^5, 0 \leq a_i, b_i \leq 10^9, 2 \leq p \leq 10^9 + 91n105,0ai,bi109,2p109+9

 

MTT不会,

只好用三模数NTT搞

板子题

原理可以看这里

真TM恶心。。

 

#include<cstdio>
#include<algorithm>
#include<cstring>
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<21, stdin), p1 == p2) ? EOF : *p1++)
#define swap(x,y) x ^= y, y ^= x, x ^= y
#define LL long long 
const int MAXN = 3 * 1e6 + 10;
using namespace std;
char buf[1<<21], *p1 = buf, *p2 = buf;
inline int read() { 
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
const int P1 = 469762049, P2 = 998244353, P3 = 1004535809, g = 3; 
const LL PP = 1ll * P1 * P2;
int N, M, P, limit = 1, L;
int A[MAXN], B[MAXN], C[MAXN], D[MAXN], Ans[3][MAXN], r[MAXN];
LL fastmul(LL a, LL b, LL mod) {
    a %= mod, b %= mod;
    return ((a * b - (LL)((LL)((long double)a / mod * b + 1e-3) * mod)) % mod + mod) % mod;
}
int fastpow(int a, int p, int mod) {
    int base = 1;
    while(p) {
        if(p & 1) base = 1ll * a * base % mod;
        a = 1ll * a * a % mod; p >>= 1;
    }
    return base % mod;
} 
void NTT(int *A, const int n, const int type, const int mod) {
    for(int i = 0; i < n; i++)
        if(i < r[i]) swap(A[i], A[r[i]]);
    for(int mid = 1; mid < n; mid <<= 1) {
        int W = fastpow(type == 1 ? g : fastpow(g, mod - 2, mod) , (mod - 1) / (mid << 1), mod);
        for(int j = 0; j < n; j += (mid << 1)) {
            int w = 1;
            for(int k = 0; k <mid; k++, w = 1ll * w * W % mod) {
                int x = A[j + k], y = 1ll * w * A[j + k + mid] % mod;
                A[j + k] = (x + y) % mod,
                A[j + k + mid] = (x - y + mod) % mod;
            }
        }
    }
    if(type == -1) {
        int inv = fastpow(n, mod - 2, mod);
        for(int i = 0; i < n; i++) 
            A[i] = 1ll * A[i] * inv % mod;
    }
}

int main() {
    #ifdef WIN32
    freopen("a.in", "r", stdin);
    #endif
    N = read(), M = read(), P = read();
    for(int i = 0; i <= N; i++) A[i] = read();
    for(int i = 0; i <= M; i++) B[i] = read();
    
    while(limit <= N + M) limit <<= 1, L++;
    for(int i = 0; i <= limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
    
    copy(A, A + N + 1, C); copy(B, B + M + 1, D);
    NTT(C, limit, 1, P1); NTT(D, limit, 1, P1);
    for(int i = 0; i <= limit; i++) Ans[0][i] = 1ll * C[i] * D[i] % P1;
    
    memset(C, 0, sizeof(C)); memset(D, 0, sizeof(D));
    copy(A, A + N + 1, C); copy(B, B + M + 1, D);
    NTT(C, limit, 1, P2); NTT(D, limit, 1, P2);
    for(int i = 0; i <= limit; i++) Ans[1][i] = 1ll * C[i] * D[i] % P2;
    
    memset(C, 0, sizeof(C)); memset(D, 0, sizeof(D));
    copy(A, A + N + 1, C); copy(B, B + M + 1, D);
    NTT(C, limit, 1, P3); NTT(D, limit, 1, P3);
    for(int i = 0; i <= limit; i++) Ans[2][i] = 1ll * C[i] * D[i] % P3;
    
    NTT(Ans[0], limit, -1, P1);
    NTT(Ans[1], limit, -1, P2);
    NTT(Ans[2], limit, -1, P3);
    
    for(int i = 0; i <= N + M; i++) {
        LL A = (fastmul(1ll * Ans[0][i] * P2 % PP, fastpow(P2 % P1, P1 - 2, P1), PP) + 
                fastmul(1ll * Ans[1][i] * P1 % PP, fastpow(P1 % P2, P2 - 2, P2), PP) ) % PP;
        LL K = ((Ans[2][i] - A) % P3 + P3) % P3 * fastpow(PP % P3, P3 - 2, P3) % P3;
        printf("%d ",(A % P + ((K % P) * (PP % P)) % P ) % P);         
    }
    return 0;
}