欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

C++智能指针 shared_ptr 与 weak_ptr 原理

程序员文章站 2022-06-02 12:48:30
...
  • 注:源代码摘自 GNU C++,除此之外为原创,转载请注明出处。
// Copyright (C) 2007-2016 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. 

一、weak_ptr 的 lock() 函数原理

/*  当每次有新的 shared_ptr 生成时,会增加 _Sp_counted_base 的 _M_use_count (+1);
    当每次有新的 weak_ptr 生成时,会增加 _Sp_counted_base 的 _M_weak_count (+1);
    通过weak_ptr<x>::lock()函数可以获取x对象的强引用(shared_ptr)。
    对应的,shared_ptr 析构时,会调用 _Sp_counted_base 的 _M_release 来使 _M_use_count (-1);
    weak_ptr 析构时,会调用 _Sp_counted_base 的 _M_release 来使 _M_weak_count (-1);
    当 _M_use_count 的数量为 0 的时候 就会释放,原始的对象(用户自定义对象) 的内存,但是不会释放 
    _Sp_counted_base 的内存。
    当  _M_use_count 和 _M_weak_count 都为 0的时候, 才会释放 _Sp_counted_base 的内存。
    所以将一个普通指针赋值给两个不同的shared_ptr对象会引发double free。
    eg: 
        int *n = new int(2);
        shared_ptr<int> pn1(n);
        shared_ptr<int> pn2(n);
        // pn1 和 pn2 内部保存的指针都是n,而且内部引用计数都为1,所以在离开作用域的时候两个指针都会发生析构并释放指向的内存n。
        尽量使用 shared_ptr<int> pn = make_shared<int> (2); 这种形式初始化一个shared_ptr指针。
    */
/*
 *    此处引用 《Linux 多线程 服务端编程 使用 muduo C++ 网络库》 中对这两个智能指针的描述:
 *      1 shared_ptr 控制对象的生命期。shared_ptr 是强引用,只要有一个指向x对象的shared_ptr存在,该x对象就不会
 *   析构。当指向对象x的最后一个shared_ptr析构或reset()的时候,x保证会被销毁。
 *      2 weak_ptr 不控制对象的生命期,但是它知道对象是否还活着。如果对象还活着,那么它可以提升(promote)为有效的
 *   shared_ptr; 如果对象已经死了,提升会失败,返回一个空的shared_ptr。“提升/lock()” 行为是线程安全的。
 *      3 shared_ptr/weak_ptr 的“计数”在主流平台上是原子操作,没有用锁,性能不俗。
 *      4 shared_ptr/weak_ptr 的线程安全级别与 std::string和STL容器一样。
*/

    // __shared_count的构造函数会 new 一个 计数对象(_Sp_counted_base),但是__weak_count的构造函数不会new。
    __shared_count(_Ptr __p) : _M_pi(0)
    {
        __try {
            typedef typename std::tr1::remove_pointer<_Ptr>::type _Tp;
            _M_pi = new _Sp_counted_base_impl<_Ptr, _Sp_deleter<_Tp>, _Lp>(
                __p, _Sp_deleter<_Tp>());

        } __catch(...) {
            delete __p;
            __throw_exception_again;
        }
    }

    // lock 函数
    __shared_ptr<_Tp, _Lp> lock() const // never throws
        {
    #ifdef __GTHREADS
            // Optimization: avoid throw overhead.
            if (expired())
                return __shared_ptr<element_type, _lp = "">();

            __try {
                return __shared_ptr<element_type, _lp = "">(*this);

            } __catch(const bad_weak_ptr&) {
                return __shared_ptr<element_type, _lp = "">();
            }

    #else
            // Optimization: avoid try/catch overhead when single threaded.
            return expired() ? __shared_ptr<element_type, _lp = "">()
                : __shared_ptr<element_type, _lp = "">(*this);

    #endif
        } // XXX MT

    bool  expired() const // never throws
    {
            return _M_refcount._M_get_use_count() == 0;
    }

二、类成员图:
C++智能指针 shared_ptr 与 weak_ptr 原理

三、下面源码有点长,不差资源分的话可以点击链接下载。
*注:所有的源码参看连接: http://download.csdn.net/download/u013005025/10155393

四、源码 (//version: Copyright (C) 2007-2016 Free Software Foundation, Inc.)

1 weak_ptr 源码
// weak_ptr
template<typename _tp = "">
class weak_ptr
    : public __weak_ptr < _Tp >
{
public:
    weak_ptr()
        : __weak_ptr<_Tp>() { }

    template<typename _tp1 = "">
    weak_ptr(const weak_ptr<_Tp1>& __r)
        : __weak_ptr<_Tp>(__r) { }

    template<typename _tp1 = "">
    weak_ptr(const shared_ptr<_Tp1>& __r)
        : __weak_ptr<_Tp>(__r) { }

    template<typename _tp1 = "">
    weak_ptr&
        operator=(const weak_ptr<_Tp1>& __r) // never throws
    {
        this->__weak_ptr<_Tp>::operator=(__r);
        return *this;
    }

    template<typename _tp1 = "">
    weak_ptr& operator=(const shared_ptr<_Tp1>& __r) // never throws
    {
        this->__weak_ptr<_Tp>::operator=(__r);
        return *this;
    }

    shared_ptr<_Tp> lock() const // never throws
    {
#ifdef __GTHREADS
        if (this->expired())
            return shared_ptr<_Tp>();

        __try{
            return shared_ptr<_Tp>(*this);

        }__catch(const bad_weak_ptr&){
            return shared_ptr<_Tp>();
        }
#else
        return this->expired() ? shared_ptr<_Tp>()
            : shared_ptr<_Tp>(*this);
#endif
    }
};
2  __weak_ptr 源码
template<typename _lock_policy = "" _lp = "">
class __weak_ptr
{
public:
    typedef _Tp element_type;

    __weak_ptr() : _M_ptr(0), _M_refcount() // never throws
    { }

    template<typename _tp1 = "">
    __weak_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
        : _M_refcount(__r._M_refcount) // never throws
    {
        __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
            _M_ptr = __r.lock().get();
    }

    template<typename _tp1 = "">
    __weak_ptr(const __shared_ptr<_Tp1, _Lp>& __r)
        : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
    {
        __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
    }

    template<typename _tp1 = "">
    __weak_ptr& operator=(const __weak_ptr<_Tp1, _Lp>& __r) // never throws
    {
        _M_ptr = __r.lock().get();
        _M_refcount = __r._M_refcount;
        return *this;
    }

    template<typename _tp1 = "">
    __weak_ptr& operator=(const __shared_ptr<_Tp1, _Lp>& __r) // never throws
    {
        _M_ptr = __r._M_ptr;
        _M_refcount = __r._M_refcount;
        return *this;
    }

    __shared_ptr<_Tp, _Lp> lock() const // never throws
    {
#ifdef __GTHREADS
        // Optimization: avoid throw overhead.
        if (expired())
            return __shared_ptr<element_type, _lp = "">();

        __try {
            return __shared_ptr<element_type, _lp = "">(*this);

        } __catch(const bad_weak_ptr&) {
            return __shared_ptr<element_type, _lp = "">();
        }

#else
        // Optimization: avoid try/catch overhead when single threaded.
        return expired() ? __shared_ptr<element_type, _lp = "">()
            : __shared_ptr<element_type, _lp = "">(*this);

#endif
    } // XXX MT

    long use_count() const // never throws
    {
        return _M_refcount._M_get_use_count();
    }

    bool expired() const // never throws
    {
        return _M_refcount._M_get_use_count() == 0;
    }

    void reset() // never throws
    {
        __weak_ptr().swap(*this);
    }

    void swap(__weak_ptr& __s) // never throws
    {
        std::swap(_M_ptr, __s._M_ptr);
        _M_refcount._M_swap(__s._M_refcount);
    }

private:
    // Used by __enable_shared_from_this.
    void _M_assign(_Tp* __ptr, const __shared_count<_Lp>& __refcount)
    {
        _M_ptr = __ptr;
        _M_refcount = __refcount;
    }

    template<typename _tp1 = "">
    bool _M_less(const __weak_ptr<_Tp1, _Lp>& __rhs) const
    {
        return _M_refcount < __rhs._M_refcount;
    }

    template<typename _lock_policy = "" _lp1 = ""> friend class __shared_ptr;
    template<typename _lock_policy = "" _lp1 = ""> friend class __weak_ptr;
    friend class __enable_shared_from_this < _Tp, _Lp > ;
    friend class enable_shared_from_this < _Tp > ;

    // Friend injected into namespace and found by ADL.
    template<typename _tp1 = "">
    friend inline bool
        operator<(const __weak_ptr& __lhs, const __weak_ptr<_Tp1, _Lp>& __rhs)
    {
        return __lhs._M_less(__rhs);
    }

    _Tp*           _M_ptr;         // Contained pointer.
    __weak_count<_Lp>  _M_refcount;    // Reference counter.
};
3 __weak_count 源码
template<_Lock_policy _Lp>
class __weak_count
{
public:
    __weak_count() : _M_pi(0) // nothrow
    { }

    __weak_count(const __shared_count<_Lp>& __r)
        : _M_pi(__r._M_pi) // nothrow
    {
        if (_M_pi != 0)
            _M_pi->_M_weak_add_ref();
    }

    __weak_count(const __weak_count<_Lp>& __r)
        : _M_pi(__r._M_pi) // nothrow
    {
        if (_M_pi != 0)
            _M_pi->_M_weak_add_ref();
    }

    ~__weak_count() // nothrow
    {
        if (_M_pi != 0)
            _M_pi->_M_weak_release();
    }

    __weak_count<_Lp>& operator=(const __shared_count<_Lp>& __r) // nothrow
    {
        _Sp_counted_base<_Lp>* __tmp = __r._M_pi;
        if (__tmp != 0)
            __tmp->_M_weak_add_ref();
        if (_M_pi != 0)
            _M_pi->_M_weak_release();
        _M_pi = __tmp;
        return *this;
    }

    __weak_count<_Lp>& operator=(const __weak_count<_Lp>& __r) // nothrow
    {
        _Sp_counted_base<_Lp>* __tmp = __r._M_pi;
        if (__tmp != 0)
            __tmp->_M_weak_add_ref();
        if (_M_pi != 0)
            _M_pi->_M_weak_release();
        _M_pi = __tmp;
        return *this;
    }

    void _M_swap(__weak_count<_Lp>& __r) // nothrow
    {
        _Sp_counted_base<_Lp>* __tmp = __r._M_pi;
        __r._M_pi = _M_pi;
        _M_pi = __tmp;
    }

    long _M_get_use_count() const // nothrow
    {
        return _M_pi != 0 ? _M_pi->_M_get_use_count() : 0;
    }

    friend inline bool
        operator==(const __weak_count<_Lp>& __a, const __weak_count<_Lp>& __b)
    {
        return __a._M_pi == __b._M_pi;
    }

    friend inline bool
        operator<(const __weak_count<_Lp>& __a, const __weak_count<_Lp>& __b)
    {
        return std::less<_Sp_counted_base<_Lp>*>()(__a._M_pi, __b._M_pi);
    }

private:
    friend class __shared_count < _Lp > ;

    _Sp_counted_base<_Lp>*  _M_pi;
};

五、shared_ptr 源码

// The actual shared_ptr, with forwarding constructors and
// assignment operators.
// shared_ptr
template<typename _tp = "">
class shared_ptr
    : public __shared_ptr < _Tp >
{
public:
    shared_ptr()
        : __shared_ptr<_Tp>() { }

    template<typename _tp1 = "">
    explicit
        shared_ptr(_Tp1* __p)
        : __shared_ptr<_Tp>(__p) { }

    template<typename _deleter = "" typename = "">
    shared_ptr(_Tp1* __p, _Deleter __d)
        : __shared_ptr<_Tp>(__p, __d) { }

    template<typename _tp1 = "">
    shared_ptr(const shared_ptr<_Tp1>& __r)
        : __shared_ptr<_Tp>(__r) { }

    template<typename _tp1 = "">
    explicit
        shared_ptr(const weak_ptr<_Tp1>& __r)
        : __shared_ptr<_Tp>(__r) { }

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
    template<typename _tp1 = "">
    explicit
        shared_ptr(std::auto_ptr<_Tp1>& __r)
        : __shared_ptr<_Tp>(__r) { }
#endif

    template<typename _tp1 = "">
    shared_ptr(const shared_ptr<_Tp1>& __r, __static_cast_tag)
        : __shared_ptr<_Tp>(__r, __static_cast_tag()) { }

    template<typename _tp1 = "">
    shared_ptr(const shared_ptr<_Tp1>& __r, __const_cast_tag)
        : __shared_ptr<_Tp>(__r, __const_cast_tag()) { }

    template<typename _tp1 = "">
    shared_ptr(const shared_ptr<_Tp1>& __r, __dynamic_cast_tag)
        : __shared_ptr<_Tp>(__r, __dynamic_cast_tag()) { }

    template<typename _tp1 = "">
    shared_ptr& operator=(const shared_ptr<_Tp1>& __r) // never throws
    {
        this->__shared_ptr<_Tp>::operator=(__r);
        return *this;
    }

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
    template<typename _tp1 = "">
    shared_ptr& operator=(std::auto_ptr<_Tp1>& __r)
    {
        this->__shared_ptr<_Tp>::operator=(__r);
        return *this;
    }
#endif
};

// __shared_ptr
struct __static_cast_tag { };
struct __const_cast_tag { };
struct __dynamic_cast_tag { };
// A smart pointer with reference-counted copy semantics.  The
// object pointed to is deleted when the last shared_ptr pointing to
// it is destroyed or reset.
template<typename _lock_policy = "" _lp = "">
class __shared_ptr
{
public:
    typedef _Tp   element_type;

    __shared_ptr()
        : _M_ptr(0), _M_refcount() // never throws
    { }

    template<typename _tp1 = "">
    explicit __shared_ptr(_Tp1* __p)
        : _M_ptr(__p), _M_refcount(__p)
    {
        __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
            typedef int _IsComplete[sizeof(_Tp1)];
        __enable_shared_from_this_helper(_M_refcount, __p, __p);
    }

    template<typename _deleter = "" typename = "">
    __shared_ptr(_Tp1* __p, _Deleter __d)
        : _M_ptr(__p), _M_refcount(__p, __d)
    {
        __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
            // TODO requires _Deleter CopyConstructible and __d(__p) well-formed
            __enable_shared_from_this_helper(_M_refcount, __p, __p);
    }

    //  generated copy constructor, assignment, destructor are fine.

    template<typename _tp1 = "">
    __shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r)
        : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
    {
        __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
    }

    template<typename _tp1 = "">
    explicit
        __shared_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
        : _M_refcount(__r._M_refcount) // may throw
    {
        __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
            // It is now safe to copy __r._M_ptr, as _M_refcount(__r._M_refcount)
            // did not throw.
            _M_ptr = __r._M_ptr;
    }

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
    // Postcondition: use_count() == 1 and __r.get() == 0
    template<typename _tp1 = "">
    explicit __shared_ptr(std::auto_ptr<_Tp1>& __r)
        : _M_ptr(__r.get()), _M_refcount()
    { // TODO requries delete __r.release() well-formed
        __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
            typedef int _IsComplete[sizeof(_Tp1)];
        _Tp1* __tmp = __r.get();
        _M_refcount = __shared_count<_Lp>(__r);
        __enable_shared_from_this_helper(_M_refcount, __tmp, __tmp);
    }

#endif

    template<typename _tp1 = "">
    __shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __static_cast_tag)
        : _M_ptr(static_cast<element_type*>(__r._M_ptr)),
        _M_refcount(__r._M_refcount)
    { }

    template<typename _tp1 = "">
    __shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __const_cast_tag)
        : _M_ptr(const_cast<element_type*>(__r._M_ptr)),
        _M_refcount(__r._M_refcount)
    { }

    template<typename _tp1 = "">
    __shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __dynamic_cast_tag)
        : _M_ptr(dynamic_cast<element_type*>(__r._M_ptr)),
        _M_refcount(__r._M_refcount)
    {
        if (_M_ptr == 0) // need to allocate new counter -- the cast failed
            _M_refcount = __shared_count<_Lp>();
    }

    template<typename _tp1 = "">
    __shared_ptr& operator=(const __shared_ptr<_Tp1, _Lp>& __r) // never throws
    {
        _M_ptr = __r._M_ptr;
        _M_refcount = __r._M_refcount; // __shared_count::op= doesn't throw
        return *this;
    }

#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
    template<typename _tp1 = "">
    __shared_ptr& operator=(std::auto_ptr<_Tp1>& __r)
    {
        __shared_ptr(__r).swap(*this);
        return *this;
    }
#endif

    void reset() // never throws
    {
        __shared_ptr().swap(*this);
    }

    template<typename _tp1 = "">
    void reset(_Tp1* __p) // _Tp1 must be complete.
    {
        // Catch self-reset errors.
        _GLIBCXX_DEBUG_ASSERT(__p == 0 || __p != _M_ptr);
        __shared_ptr(__p).swap(*this);
    }

    template<typename _deleter = "" typename = "">
    void reset(_Tp1* __p, _Deleter __d)
    {
        __shared_ptr(__p, __d).swap(*this);
    }

    // Allow class instantiation when _Tp is [cv-qual] void.
    typename std::tr1::add_reference<_Tp>::type
        operator*() const // never throws
    {
        _GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
        return *_M_ptr;
    }

    _Tp* operator->() const // never throws
    {
        _GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
        return _M_ptr;
    }

    _Tp* get() const // never throws
    {
        return _M_ptr;
    }

    // Implicit conversion to "bool"
private:
    typedef _Tp* __shared_ptr::*__unspecified_bool_type;

public:
    operator __unspecified_bool_type() const // never throws
    {
        return _M_ptr == 0 ? 0 : &__shared_ptr::_M_ptr;
    }

    bool unique() const // never throws
    {
        return _M_refcount._M_unique();
    }

    long use_count() const // never throws
    {
        return _M_refcount._M_get_use_count();
    }

    void swap(__shared_ptr<_Tp, _Lp>& __other) // never throws
    {
        std::swap(_M_ptr, __other._M_ptr);
        _M_refcount._M_swap(__other._M_refcount);
    }

private:
    void* _M_get_deleter(const std::type_info& __ti) const
    {
        return _M_refcount._M_get_deleter(__ti);
    }

    template<typename _lock_policy = "" _lp1 = "">
    bool _M_less(const __shared_ptr<_Tp1, _Lp1>& __rhs) const
    {
        return _M_refcount < __rhs._M_refcount;
    }

    template<typename _lock_policy = "" _lp1 = ""> friend class __shared_ptr;
    template<typename _lock_policy = "" _lp1 = ""> friend class __weak_ptr;

    template<typename _lock_policy = "" _lp1 = "" typename = "">
    friend _Del* get_deleter(const __shared_ptr<_Tp1, _Lp1>&);

    // Friends injected into enclosing namespace and found by ADL:
    template<typename _tp1 = "">
    friend inline bool
        operator==(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
    {
        return __a.get() == __b.get();
    }

    template<typename _tp1 = "">
    friend inline bool
        operator!=(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
    {
        return __a.get() != __b.get();
    }

    template<typename _tp1 = "">
    friend inline bool
        operator<(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
    {
        return __a._M_less(__b);
    }

    _Tp*             _M_ptr;         // Contained pointer.
    __shared_count<_Lp>  _M_refcount;    // Reference counter.
};


// __shared_count
template<_Lock_policy _Lp = __default_lock_policy>
class __shared_count
{
public:
    __shared_count()
        : _M_pi(0) // nothrow
    { }

    template<typename _ptr = "">
    __shared_count(_Ptr __p) : _M_pi(0)
    {
        __try
        {
            typedef typename std::tr1::remove_pointer<_Ptr>::type _Tp;
            _M_pi = new _Sp_counted_base_impl<_Ptr, _Sp_deleter<_Tp>, _Lp>(
                __p, _Sp_deleter<_Tp>());
        }
        __catch(...)
        {
            delete __p;
            __throw_exception_again;
        }
    }

    template<typename _deleter = "" typename = "">
    __shared_count(_Ptr __p, _Deleter __d) : _M_pi(0)
    {
        __try
        {
            _M_pi = new _Sp_counted_base_impl<_Ptr, _Deleter, _Lp>(__p, __d);
        }
        __catch(...)
        {
            __d(__p); // Call _Deleter on __p.
            __throw_exception_again;
        }
    }

    // Special case for auto_ptr<_Tp> to provide the strong guarantee.
    template<typename _tp = "">
    explicit
        __shared_count(std::auto_ptr<_Tp>& __r)
        : _M_pi(new _Sp_counted_base_impl < _Tp*,
        _Sp_deleter<_Tp>, _Lp > (__r.get(), _Sp_deleter<_Tp>()))
    {
        __r.release();
    }

    // Throw bad_weak_ptr when __r._M_get_use_count() == 0.
    explicit __shared_count(const __weak_count<_Lp>& __r);

    ~__shared_count() // nothrow
    {
        if (_M_pi != 0)
            _M_pi->_M_release();
    }

    __shared_count(const __shared_count& __r)
        : _M_pi(__r._M_pi) // nothrow
    {
        if (_M_pi != 0)
            _M_pi->_M_add_ref_copy();
    }

    __shared_count& operator=(const __shared_count& __r) // nothrow
    {
        _Sp_counted_base<_Lp>* __tmp = __r._M_pi;
        if (__tmp != _M_pi)
        {
            if (__tmp != 0)
                __tmp->_M_add_ref_copy();
            if (_M_pi != 0)
                _M_pi->_M_release();
            _M_pi = __tmp;
        }
        return *this;
    }

    void _M_swap(__shared_count& __r) // nothrow
    {
        _Sp_counted_base<_Lp>* __tmp = __r._M_pi;
        __r._M_pi = _M_pi;
        _M_pi = __tmp;
    }

    long _M_get_use_count() const // nothrow
    {
        return _M_pi != 0 ? _M_pi->_M_get_use_count() : 0;
    }

    bool _M_unique() const // nothrow
    {
        return this->_M_get_use_count() == 1;
    }

    friend inline bool
        operator==(const __shared_count& __a, const __shared_count& __b)
    {
        return __a._M_pi == __b._M_pi;
    }

    friend inline bool
        operator<(const __shared_count& __a, const __shared_count& __b)
    {
        return std::less<_Sp_counted_base<_Lp>*>()(__a._M_pi, __b._M_pi);
    }

    void* _M_get_deleter(const std::type_info& __ti) const
    {
        return _M_pi ? _M_pi->_M_get_deleter(__ti) : 0;
    }

private:
    friend class __weak_count < _Lp > ;

    _Sp_counted_base<_Lp>*  _M_pi;
};

// _Sp_counted_base
template<_Lock_policy _Lp = __default_lock_policy>
class _Sp_counted_base
    : public _Mutex_base < _Lp >
{
public:
    _Sp_counted_base()
        : _M_use_count(1), _M_weak_count(1) { }

    virtual ~_Sp_counted_base() // nothrow 
    { }

    // Called when _M_use_count drops to zero, to release the resources
    // managed by *this.
    virtual void _M_dispose() = 0; // nothrow

    // Called when _M_weak_count drops to zero.
    virtual void _M_destroy() // nothrow
    {
        delete this;
    }

    virtual void* _M_get_deleter(const std::type_info&) = 0;

    void _M_add_ref_copy()
    {
        __gnu_cxx::__atomic_add_dispatch(&_M_use_count, 1);
    }

    void _M_add_ref_lock();

    void _M_release() // nothrow
    {
        // Be race-detector-friendly.  For more info see bits/c++config.
        _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_use_count);
        if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1)
        {
            _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_use_count);
            _M_dispose();
            // There must be a memory barrier between dispose() and destroy()
            // to ensure that the effects of dispose() are observed in the
            // thread that runs destroy().
            // See https://gcc.gnu.org/ml/libstdc++/2005-11/msg00136.html
            if (_Mutex_base<_Lp>::_S_need_barriers)
            {
                __atomic_thread_fence(__ATOMIC_ACQ_REL);
            }

            // Be race-detector-friendly.  For more info see bits/c++config.
            _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
            if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count,
                -1) == 1)
            {
                _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
                _M_destroy();
            }
        }
    }

    void _M_weak_add_ref() // nothrow
    {
        __gnu_cxx::__atomic_add_dispatch(&_M_weak_count, 1);
    }

    void _M_weak_release() // nothrow
    {
        // Be race-detector-friendly. For more info see bits/c++config.
        _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
        if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count, -1) == 1)
        {
            _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
            if (_Mutex_base<_Lp>::_S_need_barriers)
            {
                // See _M_release(),
                // destroy() must observe results of dispose()
                __atomic_thread_fence(__ATOMIC_ACQ_REL);
            }
            _M_destroy();
        }
    }

    long _M_get_use_count() const // nothrow
    {
        // No memory barrier is used here so there is no synchronization
        // with other threads.
        return const_cast<const volatile = "">(_M_use_count);
    }

private:
    _Sp_counted_base(_Sp_counted_base const&);
    _Sp_counted_base& operator=(_Sp_counted_base const&);

    _Atomic_word  _M_use_count;     // #shared
    _Atomic_word  _M_weak_count;    // #weak + (#shared != 0)
};

End —————————————————————————————————-