欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

UVa12558_Egyptian Fractions (HARD version)

程序员文章站 2022-06-02 11:53:54
...

题目

题目

bala

稳稳地超时了O_O…Time limit,Time limit exceed 。

在uDebug上找了组数据,嗯确认过眼神,算法效率太低,但是没出错哈哈,还是挺欣慰的~

(其实,就运行了173.2 s 的…哪里效率低了,比你手算快多了)//手动狗头//

果然还是得ctrl+v一个狗头,才有那味儿UVa12558_Egyptian Fractions (HARD version)
UVa12558_Egyptian Fractions (HARD version)

Time limit

//对于整个问题,一头雾水 
// 方向________________>>>>>>>>> 
//那就先弄懂小规模问题: a / b 分解 成三个埃及分数。列出所有情况。 
//2020/4/18    
//9:00 -  21:30
//@reasonbao 
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cstdio>

using namespace std;

typedef long long int ll;

ll  ans[100];
ll  ans_best[100];
bool g_is_ok = false;
int g_restrict[10];
int g_k = 0;

//比较 y1 / x1  与  y2 / x2 的大小 
int CompareFraction(ll y1, ll x1, ll y2, ll x2) {
	ll fraction_front = y1 * x2, fraction_next = y2 * x1;	//通分交叉相乘,乘积可能非常大
	if (fraction_front == fraction_next) return 0;
	else if (fraction_front > fraction_next) return 1;
	else return 2;
}

////估价函数
//bool Assess(ll fenzi, ll fenmu, ll layer, ll biggest) {
//	if (CompareFraction(fenzi, fenmu, layer, biggest) == 2)
//		return true;		//"假想最大值",至少应该要比剩余的分数大或等于 
//	if (CompareFraction(fenzi, fenmu, layer, biggest) == 0 && layer == 1) 
//		return true;
//	return false;		    //若剩余层数 * 最大埃及分数  < 剩余的分数," 剪枝 " 
//} 

//最大公约数,用于约分 
ll Gcd(ll a, ll b) {
	if (b == 0) return a;
	else return Gcd(b, a % b); 
}


//约分
void Reduce(ll &fenzi, ll &fenmu) {
	if (fenzi == 0) {
		fenzi = 0;
		fenmu = 1;
	}
	else {
		ll gcd = Gcd(fenzi, fenmu);
		fenzi /= gcd;
		fenmu /= gcd;
	}
} 

void Add(ll &y1, ll &x1, ll y2, ll x2) {
	ll fraction_front = y1 * x2, fraction_next = y2 * x1;	//通分交叉相乘,乘积可能非常大
	x1 = x1 * x2;
	y1 = fraction_front + fraction_next;
	Reduce(y1, x1);
}

//估价函数 2.0
bool Assess(ll fenzi, ll fenmu, ll layer, ll biggest) {
	if (CompareFraction(fenzi, fenmu, layer, biggest) == 0 && layer == 1) 
		return true;	 
	
	long long int max_fenzi = 0, max_fenmu = 1;	
	ll from = biggest;
	for (int i = 0; i < layer; i++) {
		Add(max_fenzi, max_fenmu, 1, from ++ );
	}
//	cout << max_fenzi << " " << max_fenmu;
	if (CompareFraction(fenzi, fenmu, max_fenzi, max_fenmu) == 2 ||  CompareFraction(fenzi, fenmu, max_fenzi, max_fenmu) == 0)
		return true;		//"最大值",至少应该要比剩余的分数大或等于
		
	return false;		    //若剩余层数实际最大埃及分数之和  < 剩余的分数," 剪枝 ",没必要继续深度或者广度 
} 
 
void Sub(ll &y1, ll &x1, ll y2, ll x2) {
	ll fraction_front = y1 * x2, fraction_next = y2 * x1;	//通分交叉相乘,乘积可能非常大
	x1 = x1 * x2;
	y1 = fraction_front - fraction_next;
	Reduce(y1, x1);
}
 
//比较相同深度情况下的更优解
void Better(ll pos) {
	if ( !ans_best[pos] || ans[pos] <= ans_best[pos]) {
		for (int i = 0; i <= pos; i ++ ) 
			ans_best[i] = ans[i];
	}
}

void Dfs(ll remain_fenzi, ll remain_fenmu, ll from, ll cur, ll maxd) {
	
	if (cur == maxd ) {
//		cout << " cur = " << cur << endl; 
		if ( ! remain_fenzi) {
//			cout << "数组情况:————";
//			for (int m = 0; m < maxd; m ++ ) cout << ans[m] << " "; cout << endl << endl;
			Better(maxd - 1);
			g_is_ok = true;
		}
		return;
	}
	
	for (ll i = from; ; i ++ ) {	//向第cur层填入埃及分数,。 注:from初始化为1,即 1 / 1 
	
		if (! Assess(remain_fenzi, remain_fenmu, maxd - cur, i)) return;	//不可能事件,返回上一层 (上一层尝试其他数),不知道这算不算 ""剪枝"" 
		
		
		while (CompareFraction(remain_fenzi, remain_fenmu, 1, i) == 2) {	//等于2 表示 1/i > 剩下的分数 
			i ++ ;	//直到找到该层可填的数 (条件:1 / i 比剩余分数 小 或者 等)
//			cout << "i = " << i << endl; 
//			cout << "cur = " << cur << endl; 
		}
		//判断是否在限制数组中 ,是则使用下一个 i 
		bool is_restrict = false;
		for (int mmm = 0; mmm < g_k; mmm++) {
			if (g_restrict[mmm] == i) {
				is_restrict = true;
				break;
			}
		}
		if (is_restrict) continue;
		
		//判断是佛剩余层数还不是1,直接给减没了
		if (CompareFraction(remain_fenzi, remain_fenmu, 1, i) == 0 && maxd - cur != 1 ) continue; 
		
		ans[cur] = i;
//		cout << "减之前:"; cout << remain_fenzi << "/" << remain_fenmu << " - " << 1 << "/" << i << endl;
		
		ll remain_fenzi_tmp = remain_fenzi;
		ll remain_fenmu_tmp = remain_fenmu;
		
		Sub(remain_fenzi_tmp, remain_fenmu_tmp, 1, i); 
		
//		cout << "减之后:"; cout << remain_fenzi_tmp << "/" << remain_fenmu_tmp << endl;
		
		Dfs(remain_fenzi_tmp, remain_fenmu_tmp, i + 1, cur + 1, maxd);
	}
} 

void OutputResult(ll a, ll b, ll maxd) {
//	printf("%lld/%lld=", a, b);
	cout << a << "/" << b << "=";
	for (int i = 0; i < maxd; i ++ ) {
		if (i >= 1) cout << "+";
		cout << 1 << "/" << ans_best[i];
//		printf("%lld/%lld", 1, ans_best[i]);
	}
	cout << endl;
}

int main() {
	
//	Assess(3,4,3,4); 
//	freopen("in11.txt", "r", stdin); 	//在stdio里 
//	freopen("out11.txt", "w", stdout); 
	ll a,b;
	int kase = 1;
	int num;
	cin >> num;
	while (num -- ) {
//	while (cin >> a >> b >> g_k) {
		cin >> a >> b >> g_k;
		memset(g_restrict, 0, sizeof(g_restrict));
		for (int i = 0; i < g_k; i++) {
			cin >> g_restrict[i];
		}
		
		printf("Case %d: ", kase ++ );
		for (ll maxd = 1; ; maxd ++ ) {	//对DFS的深度进行枚举,也就是限制深度(实现题目中:加数少的情况比多的好) 
			memset(ans, 0, sizeof(ans));
			memset(ans_best, 0, sizeof(ans_best));
			Dfs(a, b, 1, 0, maxd);

			if (g_is_ok)	{
				OutputResult(a, b, maxd);
				break;
			}
		}
		g_is_ok = false;	//记得重置 
	}
	
	
	return 0;
} 

上一篇: uva1602

下一篇: Lua错误处理方式