欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Objective-C runtime机制(1)——基本数据结构:objc_object & objc_class

程序员文章站 2022-05-31 18:39:11
...

前言

从本篇文章开始,就进入runtime的正篇。

什么是runtime?

OC是一门动态语言,与C++这种静态语言不同,静态语言的各种数据结构在编译期已经决定了,不能够被修改。而动态语言却可以使我们在程序运行期,动态的修改一个类的结构,如修改方法实现,绑定实例变量等。

OC作为动态语言,它总会想办法将静态语言在编译期决定的事情,推迟到运行期来做。所以,仅有编译器是不够的,它需要一个运行时系统(runtime system),这也就是OC的runtime系统的意义,它是OC运行框架的基石。

与Runtime交互

我们的OC语言是离不开runtime的。我们会在三个层次上和runtime进行交互,分别是:OC源码,通过Foundation框架定义的NSObject方法,直接调用runtime提供的接口方法。

  • OC源码:大多数情况下,我们仅使用OC语言来编写代码,如NSObject,类属性,中括号的方法调用,协议,分类等。而这一切的背后,都是由runtime来支持的。我们平常所熟知的各种类型,背后都有runtime对应的C语言结构体,及C和汇编实现。
  • NSObject: Cocoa中大部分类均继承于NSObject,因此大多数类都继承了NSObject所提供的方法。在NSObject中,有若干方法是运行时动态决定结果的,这背后其实是runtime系统对应数据结构的支持。如isKindOfClassisMemberOfClass 检查类是否属于指定的Class的继承体系中;responderToSelector 检查对象是否能响应指定的消息;conformsToProtocol 检查对象是否遵循某个协议;methodForSelector返回指定方法实现的地址。
  • Runtime函数:Runtime 系统是一个由一系列函数和数据结构组成,具有公共接口的动态共享库。头文件存放于/usr/include/objc目录下。许多函数允许你用纯C代码来重复实现 Objc 中同样的功能。虽然有一些方法构成了NSObject类的基础,但是你在写 Objc 代码时一般不会直接用到这些函数的,除非是写一些 Objc 与其他语言的桥接或是底层的debug工作。在Objective-C Runtime Reference 中有对 Runtime 函数的详细文档。

就如在我们在前传篇中提到的,所谓的runtime黑魔法,只是基于OC各种底层数据结构上的应用。

因此,要想了解runtime,就要先了解runtime中定义的各种数据结构。我们先从最基础的objc_object和objc_class开始。

objc_object

OC的底层实现是runtime,在runtime这一层,对象被定义为objc_object 结构体,类被定义为了objc_class 结构体。

我们先看objc_object

struct objc_object {
private:
    isa_t isa;

public:

    // ISA() assumes this is NOT a tagged pointer object
    Class ISA();

    // getIsa() allows this to be a tagged pointer object
    Class getIsa();

    // 省略其余方法
    ...
}

可以看到, objc_object的定义很简单,仅包含一个isa_t 类型。

union isa_t 
{
    isa_t() { }
    isa_t(uintptr_t value) : bits(value) { }

    Class cls;
    uintptr_t bits;

    // 省略其余
    。。。
}

isa_t 是一个联合,可以表示多种类型,但是我们这里仅关注Class cls ,它表明了对象属于哪个类。关于isa_t 可以表示的其他类型,我们会在其他章节中描述。

objc_class

isa_tClass 类型其实是 typedef struct objc_class *Class 一个指针,指向objc_class 结构体。

struct objc_class : objc_object {
    // Class ISA;
    Class superclass;
    cache_t cache;             // formerly cache pointer and vtable
    class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags

    class_rw_t *data() { 
        return bits.data();
    }
    void setData(class_rw_t *newData) {
        bits.setData(newData);
    }
    // 省略其他方法
    。。。
}

可以看到,objc_class继承自objc_object , 即在runtime中,class也被看做一种对象。objc_class中,有三个数据成员:

Class superclass :同样是Class类型,表明当前类的父类。

cache_t cache :cache用于优化方法调用,其对应的数据结构如是:

struct cache_t {
    struct bucket_t *_buckets;
    mask_t _mask;
    mask_t _occupied;

    // 省略其余方法
    。。。   
}

typedef uintptr_t cache_key_t;

struct bucket_t {
private:
    cache_key_t _key;
    IMP _imp;

public:
    inline cache_key_t key() const { return _key; }
    inline IMP imp() const { return (IMP)_imp; }
    inline void setKey(cache_key_t newKey) { _key = newKey; }
    inline void setImp(IMP newImp) { _imp = newImp; }

    void set(cache_key_t newKey, IMP newImp);
};

cache的核心是有一个类型为bucket_t的指针,它指向了一个以_keyIMP对应的缓存节点。

runtime方法调用的流程是,当要调用一个方法时,先不去Class的方法列表中查找,而是先去找cache_t cache 。当系统调用过一个方法后,会将其实现IMPkey存放到cache中,因为理论上一个方法调用过后,被再次调用的概率很大。关于方法调用,我们将会在别的章节描述。

class_data_bits_t bits:这是Class的核心,其本质是一个可以被Mask的指针类型。根据不同的Mask,可以取出不同的值。

struct class_data_bits_t {

    // Values are the FAST_ flags above.
    uintptr_t bits;

    public:
    class_rw_t* data() {
        return (class_rw_t *)(bits & FAST_DATA_MASK);
    }
    void setData(class_rw_t *newData)
    {
        assert(!data()  ||  (newData->flags & (RW_REALIZING | RW_FUTURE)));
        // Set during realization or construction only. No locking needed.
        // Use a store-release fence because there may be concurrent
        // readers of data and data's contents.
        uintptr_t newBits = (bits & ~FAST_DATA_MASK) | (uintptr_t)newData;
        atomic_thread_fence(memory_order_release);
        bits = newBits;
    }
    。。。

class_data_bits_t bits 仅含有一个成员uintptr_t bits, 可以理解为一个‘复合指针’。什么意思呢,就是bits不仅包含了指针,同时包含了Class的各种异或flag,来说明Class的属性。把这些信息复合在一起,仅用一个uint指针bits来表示。当需要取出这些信息时,需要用对应的以FAST_ 前缀开头的flag掩码对bits做按位与操作。

例如,我们需要取出Classs的核心信息class_rw_t, 则需要调用方法:

class_rw_t* data() {
        return (class_rw_t *)(bits & FAST_DATA_MASK);
    }

该方法返回一个class_rw_t*,需要对bits进行FAST_DATA_MASK 的与操作。

bits在内存中有三种位排列方式:

32位

0 1 2-31
FAST_IS_SWIFT FAST_HAS_DEFAULT_RR FAST_DATA_MASK

64位兼容版

0 1 2 3-46 47-63
FAST_IS_SWIFT FAST_HAS_DEFAULT_RR FAST_REQUIRES_RAW_ISA FAST_DATA_MASK 空闲

64位不兼容版

0 1 2 3-46 47 48 49 50 51 52-63
FAST_IS_SWIFT FAST_REQUIRES_RAW_ISA FAST_HAS_CXX_DTOR FAST_DATA_MASK FAST_HAS_CXX_CTOR FAST_HAS_DEFAULT_AWZ FAST_HAS_DEFAULT_RR FAST_ALLOC FAST_SHIFTED_SIZE_SHIFT 空闲

不兼容版本的宏定义如下:

// class is a Swift class
#define FAST_IS_SWIFT           (1UL<<0)
// class's instances requires raw isa
#define FAST_REQUIRES_RAW_ISA   (1UL<<1)
// class or superclass has .cxx_destruct implementation
//   This bit is aligned with isa_t->hasCxxDtor to save an instruction.
#define FAST_HAS_CXX_DTOR       (1UL<<2)
// data pointer
#define FAST_DATA_MASK          0x00007ffffffffff8UL
// class or superclass has .cxx_construct implementation
#define FAST_HAS_CXX_CTOR       (1UL<<47)
// class or superclass has default alloc/allocWithZone: implementation
// Note this is is stored in the metaclass.
#define FAST_HAS_DEFAULT_AWZ    (1UL<<48)
// class or superclass has default retain/release/autorelease/retainCount/
//   _tryRetain/_isDeallocating/retainWeakReference/allowsWeakReference
#define FAST_HAS_DEFAULT_RR     (1UL<<49)
// summary bit for fast alloc path: !hasCxxCtor and 
//   !instancesRequireRawIsa and instanceSize fits into shiftedSize
#define FAST_ALLOC              (1UL<<50)
// instance size in units of 16 bytes
//   or 0 if the instance size is too big in this field
//   This field must be LAST
#define FAST_SHIFTED_SIZE_SHIFT 51

让我们再看一下Class的核心结构class_rw_t

struct class_rw_t {
    // Be warned that Symbolication knows the layout of this structure.
    uint32_t flags;
    uint32_t version;

    const class_ro_t *ro;         // 类不可修改的原始核心

    // 下面三个array,method,property, protocol,可以被runtime 扩展,如Category
    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;

    // 和继承相关的东西
    Class firstSubclass;
    Class nextSiblingClass;

    // Class对应的 符号名称
    char *demangledName;

    // 以下方法省略
    ...
}

struct class_ro_t {
    uint32_t flags;
    uint32_t instanceStart;
    uint32_t instanceSize;
#ifdef __LP64__
    uint32_t reserved;
#endif

    const uint8_t * ivarLayout;

    const char * name;
    method_list_t * baseMethodList;
    protocol_list_t * baseProtocols;
    const ivar_list_t * ivars;

    const uint8_t * weakIvarLayout;
    property_list_t *baseProperties;

    method_list_t *baseMethods() const {
        return baseMethodList;
    }
};

可以看到,在class_ro_t 中包含了类的名称,以及method_list_tprotocol_list_tivar_list_tproperty_list_t 这些类的基本信息。 在class_ro_t 的信息是不可修改和扩展的。

而在更外一层 class_rw_t 中,有三个数组method_array_t, property_array_t, protocol_array_t

struct class_rw_t {

    ...
    const class_ro_t *ro;         // 类不可修改的原始核心

    // 下面三个array,method,property, protocol,可以被runtime 扩展,如Category
    method_array_t methods;
    property_array_t properties;
    protocol_array_t protocols;
    ...
}

这三个数组是可以被runtime动态扩展的。

objc_class 中包含class_data_bits_t, class_data_bits_t 中通过FAST_DATA_MASK获取指向class_rw_t类型的指针,而在class_rw_t中包含class_ro_t,类的核心const信息。

realizeClass

objc_classdata()方法最初返回的是const class_ro_t * 类型,也就是类的基本信息。因为在调用realizeClass方法前,Category定义的各种方法,属性还没有附加到class上,因此只能够返回类的基本信息。

而当我们调用realizeClass时,会在函数内部将Category中定义的各种扩展附加到class上,同时改写data()的返回值为class_rw_t *类型,核心代码如下:

    const class_ro_t *ro;
    class_rw_t *rw;
    ro = (const class_ro_t *)cls->data();
    if (ro->flags & RO_FUTURE) {
        // This was a future class. rw data is already allocated.
        rw = cls->data();
        ro = cls->data()->ro;
        cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
    } else {
        // Normal class. Allocate writeable class data.
        rw = (class_rw_t *)calloc(sizeof(class_rw_t), 1);
        rw->ro = ro;
        rw->flags = RW_REALIZED|RW_REALIZING;
        cls->setData(rw);
    }

得出结论,在class没有调用realizeClass之前,不是真正完整的类。

objc_object & objc_class

如果我们再回头看一下objc_objectobjc_class 的定义,可以发现object和class是你中有我,我中有你的:

struct objc_object {
private:
    isa_t isa; // unit联合,可以表示Class类型,表明Object所属的类
    。。。
}

struct objc_class : objc_object { // objc_class继承自objc_object,表明objc_class也是一个objc_object
   Class superclass; // super class 是一个objc_class * 指针
   。。。
}

如果用UML图表示的话:

Objective-C runtime机制(1)——基本数据结构:objc_object & objc_class

可以看到,objc_class也是一个objc_object类型,这意味着,objc_class中也有一个属性isa,而这个isa,可以表示当前类属于(注意不是继承)哪个类。而这种说明类是属于哪个类的类,我们称之为元类meta-class)。

这里再重申一遍,元类不是类的父类。至于元类的用途,我们将会在OC的消息转发中详细讲解。现在只需要知道,每一个类都有一个与其对应的元类。

id

我们可以用id表示任意类型的类实例变量。在runtime中,id是这样定义的:

typedef struct objc_object *id;

其实是一个objc_object *,因为objc_objectisa存在,所有runtime是可以知道id类型对应的真正类型的。这个和C里面的void * 还是有区别的。